\[ \newcommand{\C}{\mathbb{C}} \newcommand{\haar}{\mathsf{m}} \newcommand{\B}{\mathscr{B}} \newcommand{\P}{\mathcal{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\g}{>} \newcommand{\l}{<} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\area}{\mathop{\mathsf{Area}}} \newcommand{\met}{\mathop{\mathsf{d}}} \newcommand{\emptyset}{\varnothing} \DeclareMathOperator{\borel}{\mathsf{Bor}} \newcommand{\symdiff}{\mathop\triangle} \DeclareMathOperator{\leb}{\mathsf{Leb}} \DeclareMathOperator{\cont}{\mathsf{C}} \DeclareMathOperator{\lpell}{\mathsf{L}} \newcommand{\lp}[1]{\lpell^{\!\mathsf{#1}}} \]

Week 8 Worksheet

  1. Fix $p \in \N$. Define $T : \Z/p\Z \to \Z/p\Z$ by $T(x) = x+1 \bmod p$. Let $\mu$ be normalized counting measure on $\Z / p\Z$.
    1. Verify that $\mu$ is $T$ invariant.
    2. Verify that $\mu$ is ergodic for $T$.
  2. Fix $r,s \in \N$. Put $X = \Z / r \Z$ and define $S : X \to X$ by \[ S(x) = x + s \bmod \] for all $x \in X$. When is $S$ ergodic?
  3. Define $T : [0,1) \to [0,1)$ by $T(x) = 2x \bmod 1$. Verify that Lebesgue measure restricted to $[0,1)$ is $T$ invariant.
  4. Take $X = \R^2 / \Z^2$. Define $T : X \to X$ by \[ T(x + \Z^2) = Ax + \Z^2 \] for all $x \in \R^2$ where $A = [\begin{smallmatrix} 2 & 1 \\ 1 & 1 \end{smallmatrix}]$.
    1. Check for every rectangle $R \subset X$ that $T^{-1}(R)$ has the same area as $R$.
    2. Given an example of a point $x \in X$ that does not have dense orbit for $T$.
    3. Write down a measure on $X$ that is $T$ invariant.
  5. Suppose $(X,\B,\mu,T)$ is ergodic. Fix a measurable function $f : X \to [0,\infty)$ with finite integral. Prove that if $f \circ T = f$ then $f$ is equal, on a set of full measure, to a constant function.