\[ \newcommand{\C}{\mathbb{C}} \newcommand{\haar}{\mathsf{m}} \newcommand{\B}{\mathscr{B}} \newcommand{\P}{\mathcal{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\g}{>} \newcommand{\l}{<} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\area}{\mathop{\mathsf{Area}}} \newcommand{\met}{\mathop{\mathsf{d}}} \newcommand{\emptyset}{\varnothing} \DeclareMathOperator{\borel}{\mathsf{Bor}} \newcommand{\symdiff}{\mathop\triangle} \DeclareMathOperator{\leb}{\mathsf{Leb}} \DeclareMathOperator{\cont}{\mathsf{C}} \DeclareMathOperator{\lpell}{\mathsf{L}} \newcommand{\lp}[1]{\lpell^{\!\mathsf{#1}}} \]

Week 7 Worksheet

    1. Let $(T(x))(n) = x(n+1)$ be the shift map on $X = \{0,1\}^\N$. Describe a point $x \in \{0,1\}^\N$ with dense orbit.
    2. Let $(T(x))(n) = x(n+1)$ be the shift map on $X = \{0,1,2\}^\N$. Describe a point $x \in \{0,1,2\}^\N$ with dense orbit.
  1. Let $(T(x))(n) = x(n+1)$ be the shift map on $X = \{0,1\}^\N$. Describe a point $x \in \{0,1\}^\N$ with
    1. $\displaystyle\lim_{N \to \infty} \dfrac{1}{N} \sum_{n=1}^N x(n) = \dfrac{1}{2}$
    2. $\displaystyle\lim_{N \to \infty} \dfrac{1}{N} \sum_{n=1}^N x(n) = \dfrac{1}{4}$
    3. $\displaystyle\lim_{N \to \infty} \dfrac{1}{N} \sum_{n=1}^N x(n) = \dfrac{1}{3}$
    4. $\displaystyle\lim_{N \to \infty} \dfrac{1}{N} \sum_{n=1}^N x(n) = \dfrac{1}{\sqrt{2}}$
    5. $\displaystyle\lim_{N \to \infty} \dfrac{1}{N} \sum_{n=1}^N x(n)$ not existing.
  2. Let $\mu$ be the fair coin measure on $\{0,1\}^\N$. Put \[ Y = \bigcap_{n \in \N} \{x \in \{0,1\}^\N : x(n) = 1 \Rightarrow x(n+1) = 0 \} \]
    1. Describe what it means for $x \in \{0,1\}^\N$ to belong to $Y$.
    2. Calculate $\mu(Y)$.
    3. Does \[ \lim_{N \to \infty} \dfrac{1}{N} \sum_{n=1}^N y(n) = \dfrac{1}{2} \] for some point $y \in Y$?
    4. Does \[ \lim_{N \to \infty} \dfrac{1}{N} \sum_{n=1}^N y(n) y(n+1) = \dfrac{1}{4} \] for some point $y \in Y$?
    5. Describe a measure $\nu$ on $\{0,1\}^\N$ with $\nu(Y) = 1$.
  3. Define $f : \{0,1\}^\N \to [0,1]$ by \[ f(x) = \sum_{n=1}^\infty \dfrac{x(n)}{2^n} \] for all $x \in \{0,1\}^\N$.
    1. Check that $f$ is measurable.
    2. Let $\mu$ be the fair coin measure on $\{0,1\}^\N$. Define $\nu$ on $\borel([0,1])$ by $\nu(B) = \mu(f^{-1}(B))$. Check that $\nu$ is a measure.
    3. What does the strong law of large numbers tell you about \[ \lim_{N \to \infty} \dfrac{1}{N} \sum_{n=0}^{N-1} 1_{[0,\tfrac{1}{2}]}(2^n x \bmod 1) \] for $\nu$ almost-every $x \in [0,1]$?