\[ \newcommand{\C}{\mathbb{C}} \newcommand{\haar}{\mathsf{m}} \newcommand{\B}{\mathscr{B}} \newcommand{\P}{\mathcal{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\g}{>} \newcommand{\l}{<} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\area}{\mathop{\mathsf{Area}}} \newcommand{\met}{\mathop{\mathsf{d}}} \newcommand{\emptyset}{\varnothing} \DeclareMathOperator{\borel}{\mathsf{Bor}} \newcommand{\symdiff}{\mathop\triangle} \DeclareMathOperator{\leb}{\mathsf{Leb}} \DeclareMathOperator{\cont}{\mathsf{C}} \DeclareMathOperator{\lpell}{\mathsf{L}} \newcommand{\lp}[1]{\lpell^{\!\mathsf{#1}}} \]

Week 5 Worksheet

  1. Take $X = \{0,1\}^\N$. Equip $X$ with the metric \[ \met(x,y) = \sum_{n=1}^\infty \dfrac{x(n) - y(n)}{2^n} \] and define $(Tx)(n) = x(n+1)$ for all $n \in \N$ and all $x \in X$.
    1. Write down a point $x \in X$ whose $T$ orbit is finite.
    2. Write down a point $x \in X$ whose $T$ orbit is not dense.
    3. Write down a point $x \in X$ whose $T$ orbit is dense.
  2. Put $X = [0,1) \times [0,1)$ and define $T : X \to X$ by \[ T(x,y) = (x+\alpha \bmod 1, y+x+\alpha \bmod 1) \] for all $(x,y) \in X$.
    1. Verify that \[ T^n(x,y) = (x+n\alpha, y + nx + \tbinom{n}{2} \alpha) \] for all $n \in \N$ and all $x,y \in X$.
    2. When is the orbit of $(0,0)$ dense in $[0,1)^2$?
  3. Fix a bounded sequence $x_n$ in $\R$. Suppose \[ \gamma = \lim_{N \to \infty} \dfrac{1}{N} \sum_{n=1}^N x_n \] exists. Prove that \[ \lim_{N \to \infty} \dfrac{1}{N} \sum_{n=k}^{N+k} x_n = \gamma \] for each $k \in \N$.
  4. Is the sequence $n \mapsto \log n \bmod 1$ uniformly distributed?
  5. Put $X = [0,1) \times [0,1)$.
    1. Define what it means for a sequence $n \mapsto x_n$ in $X$ to be uniformly distributed in $X$.
    2. When is \[ n \mapsto (n \alpha \bmod 1, n \alpha \bmod 1) \] uniformly distributed in $X$?
  6. Given a Borel measure $\mu$ on $X = [0,1)$ with $\mu(X) = 1$ and a strictly increasing sequence $N \mapsto r(N)$ in $\N$ say that a sequence $n \mapsto x_n$ in $X$ is $(r,\mu)$ uniformly distributed with respect to $\mu$ if \[ \lim_{N \to \infty} \dfrac{1}{r(N)} \sum_{n=1}^{r(N)} f(x_n) = \int f \intd \mu \] for all continuous function $f : X \to \R$.
    1. Using the Riesz representation theorem, prove that for every sequence $n \mapsto x(n)$ in $X$ there is a a Borel measure $\mu$ on $X$ and a strictly increasing sequence $N \mapsto r(N)$ in $\N$ such that $x$ is $(r,\mu)$ uniformly distributed.
    2. Can a sequence $n \mapsto x_n$ in $X$ be $(r,\mu)$ and $(s,\nu)$ uniformly distributed with $\mu \ne \nu$?
  7. Say that $E \subset \N$ is syndetic if there is $r(1),\dots,r(k)$ with \[ \N = (E - r(1)) \cup \cdots \cup (E - r(k)) \] where $E - t = \{ s \in \N : t + s \in E \}$. Prove that \[ \{ n \in \N : n \alpha \bmod 1 \in (\tfrac{1}{4},\tfrac{3}{4}) \} \] is syndetic for all irrational $\alpha$.