\[ \newcommand{\C}{\mathbb{C}} \newcommand{\haar}{\mathsf{m}} \newcommand{\B}{\mathscr{B}} \newcommand{\P}{\mathcal{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\g}{>} \newcommand{\l}{<} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\area}{\mathop{\mathsf{Area}}} \newcommand{\met}{\mathop{\mathsf{d}}} \newcommand{\emptyset}{\varnothing} \DeclareMathOperator{\borel}{\mathsf{Bor}} \newcommand{\symdiff}{\mathop\triangle} \DeclareMathOperator{\leb}{\mathsf{Leb}} \DeclareMathOperator{\cont}{\mathsf{C}} \DeclareMathOperator{\lpell}{\mathsf{L}} \newcommand{\lp}[1]{\lpell^{\!\mathsf{#1}}} \]

Week 4 Worksheet

  1. Check that \[ \mu(B \triangle C) = \int |1_B - 1_C| \intd \mu \] and give an (unnecessarily complicated) proof of the triangle inequality for the quantity \[ \rho(B,C) = \mu(B \triangle C) \] from Worksheet 2.
  2. Let $\nu$ be the counting measure on $\{1,2\}$. Interpret Hölder's inequality and Minkowski's inequality in this context. Draw Euclidean pictures to explain the inequalities.
  3. Let $\mu$ be counting measure on $(X,\P(X))$. The Lebesgue space $\mathsf{L}^{\!\mathsf{p}}(X,\mathcal{P}(X),\mu)$ is often denoted simply $\ell^{\mathsf{p}}(X)$.
    1. Fix $N \in \N$. Verify that \[ \ell^\mathsf{p}(\{1,\dots,N\}) = \ell^\mathsf{q}(\{1,\dots,N\}) \] for all $p,q > 0$.
    2. Produce for every $q > p \ge 1$ a non-negative function $f : \N \to [0,\infty)$ such that $f$ belongs to $\ell^q$ but does not belong to $\ell^p$.
    3. Prove that $\ell^p$ is a subset of $\ell^q$ whenever $1 \le p \l q$.
  4. Fix a measure space $(X,\B,\mu)$ with $\mu(X) \l \infty$. Fix $p \ge 1$. Verify that if $f$ belongs to $\mathsf{L}^{\!\mathsf{p}}(X,\B,\mu)$ then $f$ belongs to $\mathsf{L}^{\!\mathsf{q}}(X,\B,\mu)$ for all $1 \le q \le p$.
  5. Compare the two previous questions. In one situation Lebesgue spaces with $p$ small embed in Lebesgue spaces with $p$ larger, and in another Lebesgue spaces with $p$ large embed in Lebesgue spaces with $p$ smaller. Why is there a difference?
  6. Given $b : \N \to \R$ define $T(b) : \N \to \R$ by $(Tb)(n) = b(n+1)$.
    1. Fix $p \ge 1$. Check that if $b$ belongs to $\ell^\mathsf{p}(\N)$ then $T(b)$ belongs to $\ell^\mathsf{p}(\N)$.
    2. Is $T$ an isometry of the normed vector space $\ell^\mathsf{p}(\N)$?
  7. Fix $n \in \Z$ and let $I_n = [n,n+1]$. Use the Riemann integral on $I_n$ to define a functional on $\cont(I_n)$. Verify it is bounded and linear. Apply the Riesz representation theorem to get a Borel measure $\mu_n$ on $I_n$. Prove that \[ \sum_{n \in \Z} \mu_n \] is equal to Lebesgue measure.