\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\DeclareMathOperator{\borel}{\mathsf{Bor}}
\newcommand{\symdiff}{\mathop\triangle}
\DeclareMathOperator{\leb}{\mathsf{Leb}}
\DeclareMathOperator{\cont}{\mathsf{C}}
\DeclareMathOperator{\lpell}{\mathsf{L}}
\newcommand{\lp}[1]{\lpell^{\!\mathsf{#1}}}
\]
Week 3 Worksheet
- Fix a set $X$. A lambda system on $X$ is any subset of $\P(X)$ that contains $\emptyset$, is closed under complements, and is closed under countable disjoint unions. Fix measures $\mu$ and $\nu$ on a measurable space $(X,\B)$. Prove that
\[
\{ B \in \B : \mu(B) = \nu(B) \}
\]
is a lambda system.
- Use the π-𝜆 theorem to prove that if two Borel measures assign the same value to all intervals then they are equal.
- How many Lebesgue measurable sets are there?
- Prove that if $E \in \leb(\R)$ has $\lambda(E) = 0$ and $F \subset E$ then $F$ is in $\leb(\R)$.
- Conclude that every subset of the middle-thirds Cantor set $\mathcal{C}$ belongs to $\leb(\R)$.
- Fix a measure space $(X,\B,\mu)$. Suppose $n \mapsto f_n$ is a sequence of non-negative Borel measurable functions satisfying
\[
f_1(x) \g f_2(x) \g f_3(x) \g \cdots
\]
for all $x \in X$. Prove that
\[
\lim_{n \to \infty} \int f_n \intd \mu = \int \lim_{n \to \infty} f_n \intd \mu
\]
whenever the integral of $f_1$ is finite. Why is this last assumption necessary?
- Fix a measure space $(X,\B,\mu)$ and $f : X \to [0,\infty]$ measurable. Assume
\[
\int f \intd \mu = 0
\]
and prove that $\{ x \in X : f(x) > 0 \}$ has zero measure.
- Evaluate $\lim\limits_{n \to \infty} \displaystyle\int 1_{[0,n]}(x) \cdot \left( 1 - \dfrac{x}{n} \right)^n \cdot e^{x/2} \intd \lambda(x)$
- Fix a measure space $(X,\B,\mu)$ and a measurable function $f : X \to [0,\infty]$. Define $\nu$ on $(X,\mathscr{B})$ by
\[
\nu(E) = \int 1_E f \intd \mu
\]
for all $E \in \B$. Is $\nu$ a measure?
- Let $\mu$ be counting measure on $\N$. Interpret the monotone convergence theorem in this special case. Looking through our proof of the monotone convergence theorem, is there any circular reasoning?
- Fix a measure space $(X,\B,\mu)$. Prove Fatou's lemma which states that
\[
\int \liminf_{n \to \infty} f_n \intd \mu \le \liminf_{n \to \infty} \int f_n \intd \mu
\]
for any sequence of functions $f_n : X \to [0,\infty]$.
- For each of the following sequences of functions from $\R$ to $\R$ determine its pointwise limit, whether the limit of the integral equals the integral of the limit, whether the monoton convergence theorem applies, and whether Fatou's lemma applies.
- $f_n(x) = \dfrac{1}{n} \cdot 1_{(0,n]}$
- $f_n(x) = n \cdot 1_{(1/n,2/n]}$
- Show that the monotone convergence theorem is a consequence of Fatou's lemma.