\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\DeclareMathOperator{\borel}{\mathsf{Bor}}
\newcommand{\symdiff}{\mathop\triangle}
\DeclareMathOperator{\leb}{\mathsf{Leb}}
\DeclareMathOperator{\cont}{\mathsf{C}}
\DeclareMathOperator{\lpell}{\mathsf{L}}
\newcommand{\lp}[1]{\lpell^{\!\mathsf{#1}}}
\DeclareMathOperator{\LpL}{\mathsf{L}}
\newcommand{\Lp}[1]{\LpL^{{\!\mathsf{#1}}}}
\newcommand{\ent}{\operatorname{\mathsf{H}}}
\]
Week 11 Worksheet Solutions
- The partition $\xi = ( [0], [1], [2])$ is generating for the shift map so we may just compute
\[
\begin{align*}
\ent(T) &{} = \ent(T, \xi) = \lim_{N \to \infty} \dfrac{1}{N} \ent( \xi \vee T^{-1} \xi \vee \cdots \vee T^{-(N-1)} \xi) \\
&{} = \lim_{N \to \infty} \dfrac{1}{N} 3^N \cdot \dfrac{1}{3^N} \log (3^N)
\end{align*}
\]
giving an entropy of $\log 3$.
- With respect to normalized counting measure, every partition of $\Z/p$ has entropy at most $\log p$ and therefore, for any partition $\xi$ we have
\[
\ent(T,\xi) \le \lim_{N \to \infty} \dfrac{\log p}{N}
\]
which is zero.
- It is directly verified that $0$, $1$ and
\[
00
\quad
01
\quad
10
\]
are the only string of lengths 1 and 2 respectively that do not contain consecutive ones. Fix $n \ge 3$ and let $s_1 \cdots s_r$ be a string of zeroes and ones with no consecutive ones. If $s_1 = 0$ then there are $w_{n-1}$ possibilities for the repaining strings as any string of length $n-1$ not containing consecutive ones can appear. If $s_1 = 1$ then $s_2 = 0$ but then there are $w_{n-2}$ possibilities for the remaining $n-2$ strings. Thus $w_n = w_{n-1} + w_{n-2}$.
- Fix $0 \l p \le 1$ and let $\mu$ be the $(1-p,p)$ fair coin measure. As $T$ is ergodic for $\mu$ we can deduce that
\[
\lim_{N \to \infty} \dfrac{1}{N} \sum_{n=0}^{N-1} 1_{[11]}(T^n x) = \int 1_{[11]} \intd \mu = p^2
\]
for $\mu$ almost every $x \in \{0,1\}^\N$. But no sequence in $Y$ has consecutive ones in it, so we must have $\mu(Y) = 0$.
- The $(1-p,p)$ coin measure on $\{0,1\}^\N$ has entropy
\[
-p \log p - (1-p) \log(1-p)
\]
which, for every $0 \le p \le 1$ is less than $\log 3$. As isomorphic systems have the same entropy, no coin measure on $\{0,1\}^\N$ gives a system isomorphic to the fair coin measure on $\{0,1,2\}^\N$.
- The corresponding transition matrix is
\[
B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}
\]
and since all entries of $B^2$ are positive we may apply Parry's theorem to calculate the entropy. The eigenvalues of B are
\[
1 - \sqrt{3}, 0, 1 + \sqrt{3}
\]
and we set $\lambda = 1 + \sqrt{3}$. The entropy is $\log(1 + \sqrt{3})$.
The vectors
\[
U = \begin{bmatrix} \lambda & 2 & \lambda \end{bmatrix}
\qquad
V = \begin{bmatrix} \lambda \\ 2 \\ \lambda \end{bmatrix}
\]
are left and right eigenvectors respectively of $B$ with eigenvalue $\lambda$. Parry's theorem tells us to take
\[
Q =
\begin{bmatrix}
\dfrac{1}{\lambda} & \dfrac{2}{\lambda^2} & \dfrac{1}{\lambda} \\
\dfrac{1}{2} & 0 & \dfrac{1}{2} \\
\dfrac{1}{\lambda} & \dfrac{2}{\lambda^2} & \dfrac{1}{\lambda}
\end{bmatrix}
\]
and
\[
p = \begin{bmatrix}
\dfrac{\lambda^2}{4+2 \lambda^2}
&
\dfrac{4}{4+2 \lambda^2}
&
\dfrac{\lambda^2}{4+2 \lambda^2}
\end{bmatrix}
\]