\[ \newcommand{\C}{\mathbb{C}} \newcommand{\haar}{\mathsf{m}} \newcommand{\B}{\mathscr{B}} \newcommand{\P}{\mathcal{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\g}{>} \newcommand{\l}{<} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\area}{\mathop{\mathsf{Area}}} \newcommand{\met}{\mathop{\mathsf{d}}} \newcommand{\emptyset}{\varnothing} \DeclareMathOperator{\borel}{\mathsf{Bor}} \newcommand{\symdiff}{\mathop\triangle} \DeclareMathOperator{\leb}{\mathsf{Leb}} \DeclareMathOperator{\cont}{\mathsf{C}} \DeclareMathOperator{\lpell}{\mathsf{L}} \newcommand{\lp}[1]{\lpell^{\!\mathsf{#1}}} \DeclareMathOperator{\LpL}{\mathsf{L}} \newcommand{\Lp}[1]{\LpL^{{\!\mathsf{#1}}}} \]

Week 11 Worksheet

  1. Compute the entropy of the shift map on $\{0,1,2\}^\N$.
  2. Fix $p \in \N$. Prove that $T(x) = x+1 \bmod 1$ on $\Z/p$ has zero entropy.
  3. Prove that the number $w_n$ of length $n$ strings of zeroes and ones with no consecutive ones satisfies the recurrence \[ w_1 = 2 \qquad w_2 = 3 \qquad w_{n+2} = w_{n+1} + w_n \] for all $n \in \N$.
  4. Fix $0 \l p \le 1$. Assuming the shift map on $\{0,1\}^\N$ is ergodic, use the pointwise ergodic theorem to prove that \[ Y = \bigcap_{n \in \N} \{ x \in \{0,1\}^\N : x(n) = 1 \Rightarrow x(n+1) = 0 \} \] has zero measure for the $(1-p,p)$ coin measure.
  5. Let $\nu$ be the fair measure on $\{0,1,2\}^\N$. Prove that the shift on $\{0,1,2\}^\N$ equipped with $\nu$ is not isomorphic to the shift on $\{0,1\}^\N$ equipped with any fair coin measure.
  6. Determine the Markov measure on \[ \{ x \in \{0,1,2\}^\N : x(n) = 1 \Rightarrow x(n+1) \ne 1 \} \] and calculate its entropy.