\[
\newcommand{\C}{\mathbb{C}}
\newcommand{\haar}{\mathsf{m}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\P}{\mathcal{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\g}{>}
\newcommand{\l}{<}
\newcommand{\intd}{\,\mathsf{d}}
\newcommand{\Re}{\mathsf{Re}}
\newcommand{\area}{\mathop{\mathsf{Area}}}
\newcommand{\met}{\mathop{\mathsf{d}}}
\newcommand{\emptyset}{\varnothing}
\DeclareMathOperator{\borel}{\mathsf{Bor}}
\newcommand{\symdiff}{\mathop\triangle}
\DeclareMathOperator{\leb}{\mathsf{Leb}}
\DeclareMathOperator{\cont}{\mathsf{C}}
\DeclareMathOperator{\lpell}{\mathsf{L}}
\newcommand{\lp}[1]{\lpell^{\!\mathsf{#1}}}
\DeclareMathOperator{\LpL}{\mathsf{L}}
\newcommand{\Lp}[1]{\LpL^{{\!\mathsf{#1}}}}
\]
Week 10 Worksheet Solutions
- Fix an interval $[a,b) \subset [0,1)$. Since
\[
T^{-1}([a,b)) = [ \tfrac{a}{3}, \tfrac{b}{3} ) \cup [ \tfrac{a+1}{3}, \tfrac{b+1}{3} ) \cup [ \tfrac{a+2}{3}, \tfrac{b+2}{3} )
\]
is a disjoint union of intervals of length $(b-a)/3$ the map $T$ is measure-preserving because intervals - together with the empty set - form a π system.
Fix
\[
f = \sum_{k \in \Z} c(k) \psi_k
\qquad
g = \sum_{r \in \Z} d(r) \psi_r
\]
in $L^2([0,1))$. First suppose that $Tf = f$. Since $T \psi_k = \psi_{3k}$ we get
\[
\sum_{k \in \Z} c(k) \psi(k) = \sum_{k \in \Z} c(k) \psi_{3k}
\]
which forces $c(k) = c(3k)$ for all $k \in \Z$. As $c(k) \to 0$ as $|k| \to \infty$ we must have $c(k) = 0$ for all $k \ne 0$ and therefore $f$ is constant. This proves $T$ is ergodic.
We also have
\[
\begin{align*}
\langle f, T^n g \rangle &{} = \sum_{k \in \Z} \sum_{m \in \Z} c(k) \overline{d(m)} \langle \psi_k, \psi_{3^n m} \rangle \\
&{} = \sum_{k \in \Z} c(3^n m) \overline{d(m)}
\end{align*}
\]
and this goes to zero by the same reason as in the notes.
- Fix
\[
f = \sum_{r,s \in \Z} c(r,s) \psi_{r,s}
\]
in $\mathsf{L}^{\!\mathsf{2}}([0,1)^2)$ and suppose that $f$ is $T$ invariant. We have
\[
(T \psi_{r,s})(x,y) = \psi_{r,s}(x + \alpha, y + \beta)
\]
so
\[
T \psi_{r,s} = e^{2 \pi i (r\alpha + s \beta)} \psi_{r,s}
\]
and therefore
\[
Tf = \sum_{r,s \in \Z} c(r,s) e^{2 \pi i (r\alpha + s \beta)} \psi_{r,s}
\]
giving
\[
c(r,s) = e^{2 \pi i (r \alpha + s \beta)} c(r,s)
\]
for all $r,s \in \Z$. We conclude that $c(r,s) = 0$ whenever
\[
r \alpha + s \beta \not\in \Z
\]
which is always the case when $\{1,\alpha,\beta\}$ are independent over $\Q$.
- Put $f = \psi_1$. Then $T^n f = e^{2 \pi i n \alpha} f$ and
\[
\langle T^n f, f \rangle = e^{2 \pi i n \alpha} \langle f, f \rangle = e^{2 \pi i n \alpha}
\]
for all $n \in \N$. Were $T$ mixing we would have
\[
e^{2 \pi i n \alpha} \to \langle f, 1 \rangle \langle 1, f \rangle = 0
\]
which is impossible as $| e^{2 \pi i n \alpha} | = 1$. Hence $T$ is not mixing.
- If $B$ is bounded and $x_n$ in $\Lp{2}(X,\B,\mu)$ is a sequence converging to $y$ then
\[
0 \le \| B(x_n) - B(y) \|_\mathsf{2} = \| B(x_n - y) \|_\mathsf{2} \le C \| x_n - y \|_\mathsf{2}
\]
so $B(x_n)$ converges to $B(y)$. By the sequence characterization of continuity $B$ is therefore continuous.
If $B$ is continuous it is continuous at zero and there is $\delta \g 0$ such that $\| x \|_\mathsf{2} \l \delta$ implies $\| B(x) \|_\mathsf{2} \le 1$. Fix $x \ne 0$. Put
\[
y = \dfrac{x}{\| x \|_\mathsf{2}} \dfrac{\delta}{2}
\]
and note that
\[
\| y \|_\mathsf{2} \l \delta
\]
so that $\| B(y) \|_\mathsf{2} \le 1$. This gives
\[
\| B(x) \|_\mathsf{2} \le \dfrac{2}{\delta} \| x \|_\mathsf{2}
\]
for all $x$ and therefore $B$ is bounded.
-
- Since $T$ is measure-preserving we have
\[
\langle f, f \rangle = \int f \cdot \overline{f} \intd \mu = \int Tf \cdot \overline{Tf} \intd \mu = \langle Tf, Tf \rangle
\]
and since $Tf = \eta f$ we get
\[
\langle f, f \rangle = \eta \cdot \overline{\eta} \langle f, f \rangle = |\eta|^2 \langle f, f \rangle
\]
so $|\eta| = 1$.
- If $Tf = \eta f$ and $Tg = \xi g$ then
\[
\langle f,g \rangle = \langle Tf, Tg \rangle = \eta \overline{\xi} \langle f,g \rangle
\]
so we must have $\eta \overline{\xi} = 1$ or $\langle f,g \rangle = 0$.
- We calculate $T|f| = |Tf| = |\eta f| = |f|$.
- Since $|f|$ is invariant it must be constant by ergodicity.
- If $f,g$ are eigenfunctions with the same value then $f/g$ is defined almost everywhere because $|g| = 1$ almost surely. Moreover $f/g$ is $T$ invariant and therefore constant, so $f = \lambda g$ for some $g \in \C$.