\[ \newcommand{\C}{\mathbb{C}} \newcommand{\haar}{\mathsf{m}} \newcommand{\B}{\mathscr{B}} \newcommand{\P}{\mathcal{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\g}{>} \newcommand{\l}{<} \newcommand{\intd}{\,\mathsf{d}} \newcommand{\Re}{\mathsf{Re}} \newcommand{\area}{\mathop{\mathsf{Area}}} \newcommand{\met}{\mathop{\mathsf{d}}} \newcommand{\emptyset}{\varnothing} \DeclareMathOperator{\borel}{\mathsf{Bor}} \newcommand{\symdiff}{\mathop\triangle} \DeclareMathOperator{\leb}{\mathsf{Leb}} \DeclareMathOperator{\cont}{\mathsf{C}} \DeclareMathOperator{\lpell}{\mathsf{L}} \newcommand{\lp}[1]{\lpell^{\!\mathsf{#1}}} \DeclareMathOperator{\LpL}{\mathsf{L}} \newcommand{\Lp}[1]{\LpL^{{\!\mathsf{#1}}}} \]

Week 10 Worksheet

  1. Prove that $T(x) = 3x \bmod 1$ is measure-preserving and ergodic and mixing for Lebesgue measure on $[0,1)$.
  2. Define $T : [0,1)^2 \to [0,1)^2$ by \[ T(x,y) = (x + \alpha \bmod 1 , y + \beta \bmod 1) \] for all $x,y \in [0,1)$. Take for granted that \[ \psi_{j,k}(x,y) = e^{2 \pi i (jx+ky)} \] is an orthonormal basis of $\Lp{2}(X,\B,\mu)$. Prove $T$ is ergodic.
  3. Prove that irrational rotations on $[0,1)$ are not mixing.
  4. Fix a linear map $B$ from $\Lp{2}(X,\B,\mu)$ to $\Lp{2}(X,\B,\mu)$. Prove that $B$ is continuous with respect to the norm $\| \cdot\|_\mathsf{2}$ if and only if $B$ is bounded in the sense that there is $C \g 0$ with \[ \| B x \|_\mathsf{2} \le C \| x \|_\mathsf{2} \] for all $x$ in $\Lp{2}(X,\B,\mu)$.
  5. Fix a measure preserving map $T$ of a probability space $(X,\B,\mu)$. Suppose $f$ in $\Lp{2}(X,\B,\mu)$ is an eigenfunction of $T$ with eigenvalue $\eta$.
    1. Prove that \[ \langle f, f \rangle = \langle Tf, Tf \rangle = |\eta|^2 \langle f, f \rangle \] and conclude $|\eta| = 1$.
    2. Prove that eigenfunctions with different eigenvalues are orthogonal.
    3. Prove that $|f|$ is a $T$-invariant function.
    4. Prove, assuming $T$ is ergodic, that $|f|$ is constant almost everywhere.
    5. Prove, assuming $T$ is ergodic, that any other eigenfuction $g$ of $T$ is equal almost everywhere to a constant multiple of $f$.