Model-free estimation of a psychometric function |
|
---|---|
Home | Downloads | Demonstration | Documentation | Examples | Functions | Contacts |
---|
bandwidth_optimal
h = bandwidth_optimal(ptrue,r,m,x,H,link,guessing,lapsing,K,p,ker,maxiter,tol,method);
Optimal bandwidth for a local polynomial estimate of the psychometric function with specified guessing and lapsing rates. The difference between this function and
bandwidth_cross_validation
is that here the true psychometric function is known.Input:
ptrue
: the true function; vector with the value of the true psychometric function at each stimulus levelx
r
: number of successes at pointsx
m
: number of trials at pointsx
x
: stimulus levels
H
: search intervalOptional input:
link
: name of the link function; default is 'logit
'
guessing
: guessing rate; default is 0
lapsing
: lapsing rate; default is 0
K
: power parameter for Weibull and reverse Weibull link; default is 2
p
: degree of the polynomial; default is 1
ker
: kernel function for weights; default is 'normpdf
'
maxiter
: maximum number of iterations in Fisher scoring; default is 50
tol
: tolerance level at which to stop Fisher scoring; default is 1e-6
method
: loss function to be used: choose from: 'ISEeta
', 'ISE
', 'deviance
'; by default all possible values are calculatedOutput:
h
: optimal bandwidth for the chosenmethod
; if nomethod
is specified, then it is three-row vector with entries corresponding to the estimated bandwidths on a p-scale, on an eta-scale and for deviance