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1.1 Introduction

Heat transfer is one of the most useful things you will ever learn as a process engineer,
for the following reasons:

• Many chemical reactions are carried out at high temperatures; attaining and main-
taining these temperatures for optimum operation requires a knowledge of heat
transfer.

• Energy comprises a major economic cost in the processing industries and in do-
mestic situations, with energy often lost as heat (the lowest form of energy); energy
conservation and recovery requires an understanding of heat transfer principles.

• Heat transfer is a good example of transport phenomena (of which the other two
are mass transfer and momentum transfer), the basis of chemical engineering; a
good understanding of heat transfer eases the understanding of these other transfer
processes and of rate processes generally.

Heat transfer is also a relatively easy subject to understand, conceptually, and one that is
very familiar – in fact, the one subject in chemical engineering that we probably allude to
every day. However, the downside of a subject that is conceptually easy to understand is
that the theory for it is therefore well developed mathematically. So to become expert at
it, you need to become skillful at difficult maths.

Heat transfer is about transfer of energy, and you probably already know the following
facts:

• Unit of energy is the Joule.

• Energy is conserved (First law of Thermodynamics).

• Heat can only flow from a hotter material to a colder material (Second law of Ther-
modynamics).

This knowledge will actually form the basis for this course. Firstly we will consider
Energy balances briefly, as energy balances are the foundation of heat transfer. Then
we will consider Heat Transfer, i.e. the mechanisms by which heat is transferred from a
hotter to a colder body, and how to calculate the rate at which this happens. Then we will
finish the course by considering the Applications of Heat Transfer theory to some specific
examples of industrial relevance, including heat losses from pipes, insulation, and heating
up batch vessels.

1.2 Forms of energy

Forms of energy include:

Kinetic energy – energy arising from motion. This is important if the system is rapidly
moving, such as a bullet. Most processes are fairly stationary, so the kinetic energies
involved are negligible and can be ignored in the energy balance. But this might
not be true if, for example, a stream enters or leaves the system with high velocity,
such as a jet from a nozzle.
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Potential energy – energy arising from being moved against gravity. Most processes
occur at or near the earthâĂŹs surface, so potential energy is not a major considera-
tion in an energy balance. However, when liquids are pumped to reasonable heights
above the ground, the energy requirement to pump them may be substantial, and
certainly is the energy that you would need to consider in sizing the pump motor.

Internal energy – the energy of molecular motion (translation, vibration and rotation)
and of intermolecular attraction and repulsion This is related to enthalpy, which we
will talk about later, and is usually obtained from tables.

Heat and Work – In many ways these are the forms of energy most familiar to us. In
an important sense, heat and work are different from the other forms of energy
described above, in that they are energy in transit, i.e. energy being transferred
from one body to another. Possibly this is why they seem familiar to us. Looking
at a brick, it is not evident that it contains internal energy, but if you drop it on your
foot, the work it does on your foot is felt quite evidently.

1.2.1 Heat

Heat is the most familiar form of energy. We know that a stove feels hot and ice feels
cold. To describe this familiar phenomenon more carefully, what happens is that when
we touch a stove, heat flows from the stove to our hand, and it therefore feels hot (relative
to our hand). When we touch an ice cube, heat flows from our hand to the ice cube, and
it feels cold (relative to our hand). From these familiar notions we can formulate two
important ideas:

• Heat is a form of energy which flows, or as we often say, is transferred from one
object to another or between a system and its surroundings. Because of this heat
flow, one object loses some energy, and the other object gains this energy. When
we hold an ice cube, heat flows from our hand to the ice cube. So our hand loses
some of its energy content, as shown by the decrease in its temperature. Conversely,
the energy content of the ice cube increases, as shown by the fact that the ice cube
melts. So heat is a form of energy in transit, a form which flows or is transferred as
a result of a temperature difference.

• Secondly, in order for there to be a flow of heat, there must be a temperature differ-
ence or gradient (heat, like water, will only flow “downhill”).

From these two ideas, we can define heat as “the form of energy which flows from one
object or system to another as the result of a temperature difference”. And it is one of
the laws of thermodynamics, and something that we know from our everyday experience,
that the direction of the flow is from hotter bodies to colder bodies.

1.2.2 Enthalpy

We noted earlier the concept of Internal Energy, that is, the energy that a material pos-
sesses as a result of the motion and attractions and repulsions of its molecules. This energy
depends on the composition of the material and its state, which is determined by the tem-
perature and pressure. Related to the internal energy is the Enthalpy, h. The properties of
enthalpy are as follows:
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• For a given material, at constant pressure, the enthalpy depends only on the ma-
terial’s temperature and physical state (i.e. liquid, solid, vapour) So, for example,
water at 100 ◦C has less energy and less enthalpy than steam at 100 ◦C.

• At constant temperature and physical state, the change of enthalpy with pressure is
zero for ideal gases and small for liquids and solids.

This means that, for liquids, if you know the enthalpy at a given temperature and the
corresponding vapour pressure then this is close enough for other pressures. So tables
often give enthalpy data at a particular temperature and the corresponding vapour pres-
sure.

There are no absolute values for enthalpy. Instead, the enthalpy of a substance is given a
value of zero at some arbitrary datum point, and all other enthalpies are quoted relative to
this reference point. For many substances the reference datum is set at 25 ◦C and 1 atm
pressure, with the substance in its physical state normal to those conditions. But other
datum points can be taken – for example, for water, the datum point at which the enthalpy
of liquid water is zero is often taken to be the triple point (the point at which solid, liquid
and gaseous water can coexist) which occurs at a conveniently close to zero temperature
of 0.01 ◦C, and its equilibrium vapour pressure of 611.2 Pa.

1.3 Specific heat capacity

Which weighs more, a kg of water or a kg of air?

Okay, then which will require more energy to heat it up?

When you heat a material up, its enthalpy increases as the temperature increases. How
much energy (or enthalpy) does it take to raise the temperature of a material by, say, 1 ◦C?
This depends on the material. For water, for example, it takes about 4180 J to raise the
temperature of 1 kg by 1 ◦C, while for air, it takes only about 1005 J (less than a quarter)
to achieve the same temperature rise.

The amount of energy required to heat up a kilogram of a material by 1 ◦C is called its
specific heat capacity, Cp (“specific” refers to the fact that we are dealing with a kilogram
– if we were talking about the energy to heat up a mole of material, we would use the
molar heat capacity). The units of specific heat capacity are J kg −1 K −1 i.e. the amount
of energy in Joules to raise the temperature of 1 kg by 1 K.

Specific heat capacity is clearly just the slope of the graph of enthalpy against temperature
(provided the material does not change its phase).

dh

dT
= Cp

Specific heat capacity depends slightly on the temperature. When calculating the energy
required to achieve a particular temperature change, use the specific heat capacity at the
midpoint temperature (but not if there is a phase change involved! – in this case, the en-
ergy requirements above and below the phase change must be calculated separately). Or,
for a more accurate calculation, look up the enthalpy of the material at the two tempera-
tures, and subtract one from the other.
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T

h
Slope = Cp

Figure 1.1: Specific heat capacity.

1.4 Rate of Energy Uptake

Specific heat capacity is the amount of energy required to raise the temperature of 1 kg of
material by 1◦C; it has units of J kg−1 K−1. Looking at the units, if we multiply specific
heat capacity by a temperature change and a mass flow rate, we will therefore get units of
J s−1, i.e. Watts, or rate of heat transfer. The symbol for rate of heat transfer is Q̇ (the dot
indicates a flow rate):

Q̇ = ṁCp (Tout − Tin)

W =
J
s

=
kg
s
· J

kg K
·K

So if we know the heat transfer rate, mass flow rate and specific heat capacity, we can
calculate the temperature change of a material from this equation.

The above equation is one of the most useful equations you’ll learn in this course. There
is no need to memorise it, as you can work it out logically just by considering the units
of specific heat capacity. But you do need to understand it – and by understanding it,
naturally you’ll remember it.

For a batch operation the equation is much the same but without the dots, indicating the
total quantity of energy required to change the temperature of a given mass:

Q = mCp (Tfinal − Tinitial)

J = kg · J
kg K

·K

Alternatively, the rate of change of temperature can be related to the heat transfer rate:

Q̇ = mCp
dT

d t

W = kg · J
kg K

· K
s

1.5 Latent heat of vaporisation/condensation (hfg) and
latent heat of fusion/melting (hsf )

Water at atmospheric pressure boils when it reaches 100 ◦C, to form steam at 100 ◦C.
Both are at the same temperature, but steam evidently contains more energy than water.
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To put it another way, it takes energy to convert water into steam, and the question is, how
much? The amount of energy required to convert water into steam is called the latent heat
of vaporisation. Similarly, when steam gives up this energy and condenses into water, this
is called the latent heat of condensation. The magnitude of the energy change is the same
whether we are evaporating water or condensing steam. For water/steam at 100 ◦C and
atmospheric pressure, the latent heat of vaporisation/condensation is 2257 kJ kg−1. Com-
paring this with the enthalpy difference between water at 0 and 100 ◦C of 419.2 kJ kg−1,
we can see that it takes a lot more energy to convert water into steam than it does to
heat water from 0 to 100 ◦C. So, for example, if we were drying a product, we would
be much better, in energy terms, to remove as much water as possible mechanically (e.g.
by squeezing or filtering) before evaporating off the rest. (Water can evaporate even be-
low 100 ◦C, and still requires energy to do so. During drying, this energy comes from
the air. At 25 ◦C, the latent heat of vaporisation is 2442 kJ kg−1, slightly greater than at
100 ◦C.)

Similarly, it takes energy to melt ice, and water turning to ice gives up energy. This is
called the latent energy of melting or fusion, and has a magnitude of 333.5 kJ kg−1 at
0 ◦C.

Figure 1.2 shows the change in enthalpy with temperature for water, as it changes from
ice to liquid water to steam, showing that the largest change arises due to the latent heat
of vaporisation.

Figure 1.2: Variation with temperature of enthalpy and specific heat capacity of water and
steam at atmospheric pressure.

1.6 Thermophysical Properties of Water, Steam, and Air

The most commonly encountered materials in the process industries are water, steam and
air, and if you know how to read enthalpy tables for these, you will be able to do it
for other substances. Also, it is important as engineers that you remember some of the
important thermophysical properties of water, steam, and air, so that you can do rough
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calculations in your head or on an envelope. Table 1.1 shows typical values of important
thermophysical properties for water, steam and air. Note that values are given for different
temperatures, either 0, 25, or 100 ◦C. The shaded values you ought to remember, at least
roughly – the others are there for reference. The density of air is not usually tabulated as
it is easily calculated from the ideal gas law. Thermal conductivities and diffusivities are
given for reference – we will introduce these later. Dynamic viscosities are also given,
just for interest.

Table 1.1: Typical values of important thermophysical properties of water, ice, steam, and air.

Property Water Ice Steam Air
Specific heat capacity, Cp
(kJ kg−1 K−1)

4.180a 2.101c 2.034b 1.005a

Latent heat of vaporisation/-
condensation, hlg (kJ kg−1)

2257b 2257b

Latent heat of fusion/melting,
hsl (kJ kg−1)

333.5c 333.5c

Density, ρ (kg m3) 997a– 958b 917c 0.6b 1.186a,*

Thermal conductivity, λ or k
(W m−1 K−1)

0.611a 2.240c 0.0248b 0.025a

Viscosity, µ (Pa s) 891× 10−6a 12.06× 10−6b 18.3× 10−6a

Thermal diffusivity, α
(m2 s−1)

0.147× 10−6a 1.17× 10−6c 20.3× 10−6b 21.0× 10−6a

Dynamic viscosity, v (m2 s−1)
(= momentum diffusivity)

0.894× 10−6a 20.1× 10−6b 15.4× 10−6a

Ratio
momentum diffusivity

thermal diffusivity
6.1a 0.99b 0.73a

a 25 ◦C, b 100 ◦C, c 0 ◦C, * From ideal gas law.
Shaded values you ought to remember, at least approximately.

Figure 1.3 presents an abridged steam table, which list the important thermophysical prop-
erties of liquid water and steam at selected temperatures and the corresponding saturated
vapour pressure.

Example: What is the energy requirement to raise the temperature of 60 kg of water from
10 ◦C to 80 ◦C? Calculate the answer in two ways – by using the specific heat capacity at
the midpoint temperature (45 ◦C), and by subtracting the enthalpy of water at 10 ◦C from
the enthalpy of water at 80 ◦C. Why are the two answers different? Which answer is more
accurate?

Example: What is the energy requirement to convert 1 kg of water at 10 ◦C into steam
at 150 ◦C? Calculate your answer by adding the energy required to raise the water from
10 ◦C to 100 ◦C (using the specific heat capacity at the midpoint temperature of 55 ◦C),
adding the latent heat of vaporisation, the adding the energy to raise the steam from 100 ◦C
to 150 ◦C (again using the appropriate mid-point temperature to look up the specific heat
capacity). Then calculate the energy requirement by subtracting the enthalpy of water at
10 ◦C from the enthalpy of steam at 150 ◦C. How do the two answers compare?
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Figure 1.3: Abridged steam tables.

1.7 Conservation of energy and energy balances

Energy is expensive. An energy balance accounts for all the energy entering and leaving
a system. If we overlook one of the forms of energy entering or leaving the system, we
will not calculate the energy balance correctly.

1.7.1 Energy balances

Conservation of energy is one of the fundamental laws of the universe, along with con-
servation of mass, except where nuclear reactions are involved, in which case mass can
be converted to energy via the equation

E = mc2

Because c2 is such a large term, a very small amount of mass is converted into vast
amounts of energy – this is why nuclear energy is such an attractive prospect.
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1.7.2 Statement of the Law of Conservation

But in most process industries, except the nuclear industry, we don’t get nuclear reactions
occurring, so we can take it as fundamentally true that energy, and mass, are conserved.
This means that all the energy that enters a system must leave, one way or another, or else
must accumulate in the system. We write this as follows:

IN− OUT + GENERATION− DISSIPATION = ACCUMULATION

This applies for heat transfer, mass transfer and momentum transfer. This is a fundamen-
tal statement for chemical engineers, and it applies to all situations, from overall plant
balances to individual unit operations and to small elements within equipment. Applying
this law to conservation of energy within process equipment results in sets of equations,
either algebraic or differential, which describe the variation of temperature or heat flow
within the equipment. If the process or operation involves no generation or dissipation of
heat (e.g. no reactions producing or removing energy), then the above equation simplifies
to

IN− OUT = ACCUMULATION

If the system is also operating at steady state i.e. nothing is changing, then there cannot
be any accumulation within the system, therefore

IN− OUT = 0

or
TOTAL ENERGY IN = TOTAL ENERGY OUT

We must remember to include all forms of energy involved, and recognise that a particular
form of energy is not necessarily conserved, as energy can be transformed, e.g. from
mechanical work into heat.

It helps enormously when performing an energy balance (or a mass balance) to draw a
dashed line around the system of interest, whether the system is an entire process, some
section of it, a single unit operation, or a differential element within an item of process
equipment. This helps to define clearly what energy flows are entering and leaving the
system, and helps you to avoid overlooking any.

Mass and energy balance examples can be deceptively easy, but more difficult examples
require a systematic approach. Five helpful steps to performing mass and energy balances
are as follows:

1. Draw a picture, with all streams (mass and energy) entering and leaving the system.
Draw a dashed line to indicate the boundaries of the system. Label the streams
(with numbers if necessary).

2. Decide a basis on which to perform the calculations.

3. Draw up two balance tables, one for the mass balance, the other for the energy
balance.

4. Perform preliminary calculations – fill in the balance tables.

5. Set x = the unknown quantity to be calculated. Solve for x.
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1.7.3 Temperature-Enthalpy Diagrams

You will remember the enthalpy-temperature diagram for water, where we showed how
enthalpy changed with temperature. We showed it this way, because it makes intuitive
sense to consider, when we change the temperature of water, how its enthalpy would
change. But it might actually be more sensible to look at it as, by adding energy to the
water, we are changing its enthalpy, and are seeing how the temperature changes. In other
words, it might make more sense to make temperature the dependent axis, and enthalpy
the independent axis. This would make our temperature-enthalpy diagram for a pure
component look like Figure 1.4.

Figure 1.4: Temperature-enthalpy plot for a pure component at constant pressure.

TE is the temperature of evaporation, or the boiling point. For a multicomponent stream,
this would vary over the evaporation region from the bubble point to the dew point.

TF is the temperature of fusion, or the freezing point. For a multicomponent stream, this
would vary over the fusion region from the solidus point to the liquidus point.

hlg is the enthalpy (or latent heat) of evaporation = fn[T, P, composition] hsl is the en-
thalpy (or latent heat) of fusion = fn[T, P, composition] hsg is the enthalpy (or latent
heat) of sublimation = fn[T, P, composition]
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2.1 Introduction

We have talked a lot about energy balances, and that energy is conserved over a system,
but may be transferred within the system. For example, in a heat exchanger the total
energy entering and leaving the system is constant, but heat is transferred from the hot to
the cold stream. And we established that the rate of change of enthalpy of either stream,
H & D , is equal in magnitude to the heat transfer rate, Q̇ (in J s−1 or Watts, W), through
the heat exchanger walls.

So energy balances tell us how much heat is transferred, but they do not tell us how (i.e.
by what mechanisms) this heat is transferred, or how we can design our heat exchanger
(or whatever) to achieve this rate of transfer. To decide these questions, we need to move
from a study of energy balances to Heat Transfer.

2.2 General Heat Transfer Equation

Let us start by considering what factors we might expect to affect heat transfer. If I have
an external wall in my office, with a window, and I lose heat through the wall and the
window, what factors might affect the rate at which I lose heat and therefore the size of
the heater I need in my office?

• size of the wall – Area, A

• temperature difference between my office and the outside – ∆T

• thickness of the wall – x

• what the wall is made of – its thermal conductivity – λ or k

• rate of transfer of heat from air inside to the wall, and from the wall to the outside

• Sunny, raining, windy

• Open or closed window

• etc.

In a general sense, the thing that is causing heat transfer to occur is the temperature dif-
ference, ∆T

If ∆T is larger, the rate of heat transfer will be greater. The fact that there is a wall in
the way means that there is a resistance to heat transferring. If we have a thicker wall, for
example, the resistance to heat transfer will be greater, and heat will be transferred more
slowly. So the rate of heat transfer could be described by an equation:

Q̇ =
∆ t

R

where R incorporates all the factors that contribute to the resistance to heat transfer, such
as the area of the wall, its thickness, what it’s made of, etc. The units of R are clearly
K W−1, in other words, the amount of temperature driving force required to cause heat to
be transferred at a rate of 1 W. N.B. This is only true for steady state conditions.

Alternatively, the rate of heat transfer could be described by:

Q̇ = UA∆T
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where U represents some sort of overall heat transfer coefficient (units: W m−1 K−1),
which would incorporate the thickness of the wall, what it’s made of, rate of heat transfer
to it from the air inside and from it to the air outside. Clearly, R = 1/UA.

This is the General Heat Transfer Equation, and ranks alongside Q̇ = ṀCp (Tout − Tin) as
one of the most important heat transfer equations you will learn – memorise it and digest
it! The General Heat Transfer Equation can also be written as

q̇ =
Q̇

A
= U∆T

where q̇ is called the heat flux or heat transfer per unit area (units: W m−2). Often it is the
heat flux that we are interested in.

2.3 Mechanisms of Heat Transfer

Let’s start by identifying the major energy transfer mechanisms.

Heat transfer Other energy transfer mechanisms
Conduction Mechanical
Convection Electrical
Radiation Electromagnetic (e.g microwave)

(Phase change) Chemical reaction
Nuclear reaction

The difference between the heat transfer list and the other mechanisms identified above
for energy transfer is that in the first list, the driving force for energy transfer is a tem-
perature difference. For heat transfer, energy will only flow if there is a temperature
difference. The other mechanisms can generate thermal energy within a material without
the requirement for a temperature gradient.

To quote from Ozisik, page 1, “Since heat flow takes places whenever there is a tem-
perature gradient in a system, a knowledge of the temperature distribution in a system is
essential in heat transfer studies.” We will therefore aim, as much as possible, to focus on
what the temperature distribution is in the systems we are considering, i.e. the temperature
profile.

2.3.1 Conduction

Conduction is the mechanism of heat transfer in which energy exchange takes place from
a region of high temperature to one of lower temperature by the kinetic motion or direct
impact of molecules and by the drift of electrons. The latter applies particularly to metals,
which are both good electrical conductors and heat conductors. Essentially, conduction is
heat transfer by molecular motion in solids or fluids at rest.

The empirical law of heat conduction, based on experimental observation, was proposed
by Joseph Fourier, who stated that the rate of heat flow by conduction in a given direction
is proportional to the area normal to the direction of heat flow and to the gradient of the
temperature in that direction:
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Fourier’s law: Q̇x = −λAdT

dx

In terms of heat flux: q̇x = −λdT

dx

Q̇x is the rate of heat flow through area A in the positive x-direction. Heat will only
flow in the positive x-direction if the temperature is decreasing in that direction – hence
the negative sign, as dT/dx must be negative for Q̇x to be positive – i.e. heat flows
“downhill”. The proportionality constant, λ (or k as is often used) is called the thermal
conductivity of the material. Good conductors have high values of λ, good insulators
low values. λ has SI units W m−1 K−1, and varies from around 0.1 W m−1 K−1 for gases
and insulating materials to up to 1000 W m−1 K−1 for highly conducting metals such as
copper or silver. If the temperature gradient through the material is uniform (as it would
be in a slab of isotropic material) and at steady state, and the thermal conductivity does
not change significantly with temperature, then Fourier’s equation can be written in its
steady state form:

Q̇x =
λ

x
A∆T

= UA∆T

=
∆T

R

Therefore, U = λ
x

and R = x
λA

for pure conduction.

Comparing with the General Heat Transfer Equation, we see that for pure conduction
through a slab, U , the overall heat transfer coefficient, under steady state conditions is
given by λ

x
. If we think in terms of the resistance to heat transfer, then R = x

λA
. This

makes sense: as the thickness of the wall increases, so must its resistance to heat transfer.
But if the thermal conductivity is very large, then heat is transferred easily, and the resis-
tance to heat transfer is small. Similarly, if the area is very large, then a lot of heat will be
lost through it.

Figure 2.1 overleaf shows typical ranges of thermal conductivities for various materials.
Note that it is a logarithmic scale, and that metals have thermal conductivities typically
1 000 − 10 000 times greater than insulators and gases. Figure 2.2 shows the effect of
temperature on thermal conductivities of some representative materials. Table 2.1 below
gives thermal conductivities of various materials at 0 ◦C.
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Question
Example: Heat loss through a window.
The window in my office is 2 metres by 3 metres. Assuming all other walls are
well insulated and that heat loss only occurs through the window, calculate what
size of heater I need in my office to maintain the temperature, if the inside surface
of the glass is at 11◦C and the outside surface at 6◦C. Sketch the temperature profile
through the glass.
Data: Thickness of glass = 4 mm Thermal conductivity of glass = 0.78 W m−1 K−1.
Draw a picture:

Q̇x =
λ

x
A∆T

=
0.78× 6× (11− 6)

4× 10−3

= 5850 W

So I need nearly a 6 kW heater in my room to maintain it at a comfortable temper-
ature (which is quite a lot).

2.3.2 Convection

Convection is the mechanism of heat transfer between a flowing fluid and a solid body
(or between a gas and a liquid at rest). Imagine a fluid flowing past a solid wall, Fig-
ure 2.3.

Clearly there will be a temperature profile between the bulk fluid and the wall – in the
bulk the fluid will be fairly uniformly at its bulk average temperature, Tf , and near the
wall it will approach the wall temperature, Tw.

Imagine now a layer near the wall in which the temperature varies between Tw and Tf . If
we were to consider heat conduction in this layer, we could describe it by

Q̇ =
λl
δ
A∆T

where λl is the thermal conductivity of the liquid layer near the wall, and δ the thickness
of our imaginary layer. The trouble is, we don’t know the value of either λl or δ, and both
will change depending on the fluid and the flow conditions. So as we don’t know either,
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Table 2.1: Thermal conductivities of various materials at 0 ◦C.

Material Thermal Conductivity
W m−1 K−1 Btu −1hr −1ft ◦F−1

Metals
Silver (pure) 400 237
Copper (pure) 385 223
Aluminium (pure) 202 117
Nickel (pure) 93 54
Iron (pure) 73 42
Carbon steel, 1% 43 25
Lead (pure) 35 20.3
Stainless steel (15% Cr, 10% Ni) 19 11.3
Chrome-nickel steel (18% Cr, 8% Ni) 16.3 9.4
Non-metallic solids
Quartz, parallel to axis 41.6 24
Magnesite 4.15 2.4
Marble 2.08− 2.94 1.2− 1.7
Ice 2.0 1.19
Sandstone 1.83 1.06
Mortar 1.16 0.69
Glass, window 0.78 0.45
Maple or oak 0.17 0.096
White pine 0.112 0.066
Corrugated cardboard 0.064 0.038
Sawdust 0.059 0.034
Glass wool 0.038 0.022
Liquids
Mercury 8.21 4.74
Water 0.556 0.327
Ammonia 0.540 0.312
Lubricating oil, SAE50 0.147 0.085
Freon 12, CCl2F2 0.073 0.042
Gases
Hydrogen 0.175 0.101
Helium 0.141 0.081
Air 0.024 0.0139
Water vapour (saturated) 0.0206 0.0119
Carbon dioxide 0.0146 0.00844

we may as well replace them both by a single term, which we will call the convective heat
transfer coefficient, h:

Q̇ = hA∆T

To be dimensionally correct, h must have SI units of W m−2 K−1. These are the same
units as U ; clearly, for pure convection, U is equal to h. The resistance to heat transfer by
convection is given by R = 1/hA.

The convective heat transfer coefficient varies with the type of flow (turbulent or laminar),
the geometry of the system, the physical properties of the fluid, the average temperature,
the position along the surface of the body, and time. So calculating h is quite complicated.
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Figure 2.1: Typical range of thermal conductivity of various materials.

Figure 2.2: Effect of temperature on thermal conductivity of materials.

We will consider ways to calculate it later in the course.
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Figure 2.3: Heat transfer by convection between a hot fluid and a wall.

h also depends on whether the heat transfer is by forced convection or free convec-
tion.

Free (or natural) convection arises when the fluid motion is caused by buoyancy effects
caused by density differences caused by temperature differences in the fluid. So a hot
plate suspended in air causes the immediately adjacent air to heat up; this air rises, giving
fluid motion relative to the solid plate.

Forced convection, by contrast, arises when the fluid motion is artificially induced, e.g.
by a pump or a fan which forces the fluid to flow over the surface of the solid.

To summarise, the convective heat transfer coefficient, h, is affected by the fluid mechan-
ics of the system, so is somewhat difficult to determine – once known, however, it is easy
to use. Table 2.2 shows typical values of h. Note that these values differ by 4 − 5 orders
of magnitude. In practice, this means that if you have a wall with convective heat transfer
on both sides, often the coefficient on one side will be the controlling one.

Note too that condensing steam uses a heat transfer coefficient in the same way and with
the same units, although the mechanism of heat transfer is not quite the same (involving
phase change rather than conduction through an imaginary thin layer of fluid near the
wall).

The very high value of heat transfer coefficient for condensing steam is one reason that
steam is a popular heat transfer fluid in the process industries. The two other major
reasons are:

• condensing steam has a very high latent heat of condensation, so delivers a lot of
heat

Table 2.2: Representative values of convective heat transfer coefficient.

Condition h (W m−2 K−1)
Free convection, air 6− 35
Forced convection, air 28− 851
Free convection, water 170− 1140
Forced convection, water 570− 22 700
Boiling water 5 700− 85 000
Condensing steam 57 000− 170 000
Forced convection, sodium 113 000− 227 000
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• the temperature at which the steam condenses can be easily controlled by changing
the pressure

Additional, more minor, reasons include: steam is cheap, non-toxic, environmentally
friendly

Example: Steam condenses on the inside of an insulated pipe 10 m in length and with
outer diameter 5 cm. Heat is lost at a rate of 900 W to the external air at 15 ◦C with a
convective heat transfer coefficient of 20 W m−2 K−1. Calculate the temperature of the
outer surface of the pipe.

Q̇ = hAδ T

900 = 20× (π × 0.05× 10)× (Ts − 15)

Ts = 43.6 ◦C

Answer: 43.6 ◦C

2.3.3 Radiation

All bodies emit electromagnetic energy as a result of their temperature; this energy is
called thermal radiation. The internal energy of the body is converted into electromag-
netic waves which travel through space. The emitted radiation depends on the temper-
ature of the body, the wave length (or range of wave lengths) and the condition of the
surface.

Similarly, radiation falling on a body may be absorbed, transmitted or reflected (or a com-
bination of all three). Radiation incident on an absorbing body is attenuated as it passes
through the body. If it is attenuated over a very short distance (a few angstroms), then
the body is considered opaque to thermal radiation. Water and glass partially reflect, par-
tially absorb and partially transmit, and are therefore considered semi-transparent. Only
in a vacuum does thermal radiation propagate with no attenuation. However, air and most
gases are transparent to thermal radiation for most practical purposes, although some
gases such as CO2, carbon monoxide, water vapour and ammonia can absorb significant
thermal radiation over certain wavelength bands.

Bodies which absorb all radiation falling on them (without transmitting or reflecting any)
are called black bodies. Black bodies are also perfect emitters or ideal radiators – they
emit the maximum possible amount of thermal radiation. Bodies which reflect or transmit
some of the radiation incident on them, and emit less than the maximum possible, are
called grey bodies.

So, thermal radiation emitted from one body and absorbed by another represents a mech-
anism of heat transfer. The difference between radiation and the other two forms of heat
transfer discussed above, conduction and convection, is that radiation does not require a
medium through which to travel. Radiation can transfer heat in a vacuum. This is how
heat energy from the sun can travel to Earth, despite there being nothing (substantial) in
between.

The maximum emitted radiation from a black body is given by the Stefan-Boltzmann
law:

Eb = σT 4
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where Eb is the emitted black body radiation (W m−2), T is the absolute temperature in
Kelvins (K), and σ is the Stefan-Boltzmann constant.

Clearly the amount of energy radiated by a body increases very rapidly with temperature,
as this is raised to the fourth power.

Real (i.e. grey) bodies do not emit the maximum radiation given by the above equation,
but some smaller amount given by

E = εEb = εσT 4

where ε is the emissivity of the surface.

The emissivity, ε, depends on the surface conditions. It is unity for a true black body, and
between 0 and 1 for all real bodies.

When radiation falls onto a black body, it is completely absorbed. But for real (grey)
bodies, the energy absorbed is less than all of the incident radiation, and is given by

q̇abs = αq̇inc

where q̇abs is the energy absorbed (W m−2), q̇inc is the energy incident on the surface
(W m−2), and α is the absorptivity of the surface.

Like ε, α is between zero and unity, and is only unity for black bodies. The absorptivity
of a body is generally different from its emissivity, but often, to simplify the analysis, α
is assumed to equal ε.

The net heat transfer flux (heat transfer per unit area) for two very large black bodies
separated by a vacuum is given by

q̇ = Eb1 − Eb2
= σ

(
T 4

1 − T 4
2

)
However, in real situations we are dealing with surfaces of finite areas which may be
separated such that not all of the radiation leaving one strikes the other. We are interested
in the net heat transfer in these situations, which we can describe by

Q̇ = F1,2σA1

(
T 4

1 − T 4
2

)
where F1,2 is the view factor between the two surfaces which depends on the geometry
of the system, and is defined as “the fraction of the radiation leaving surface 1 that is
intercepted by surface 2”. This equation describes the heat transfer rate from a surface at
temperature T1 of area A1 falling on a surface at temperature T2 and of area A2 (which is
included in F1,2).

If one of the bodies is a black body or has a very large area (e.g. the sky), then (as we’ll
see later) the equation simplifies to the following:

Q̇ = σA1ε1

(
T 4

1 − T 4
2

)
This is the equation that we’ll use at this stage, as we’ll confine ourselves mostly to
geometries where the area and emissivity of only one of the two bodies exchanging heat
via thermal radiation matters.
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Heat transfer by thermal radiation is non-linear with respect to temperature. This can give
rise to iterative calculations when combined with convection.

Example. Combined convection and radiation

A small, thin metal plate of area Am2 is kept insulated on one side and exposed to the
sun on the other. The plate absorbs solar energy at a rate of 500 W m−2. It dissipates heat
by convection to the ambient air at Ta = 300 K with a convection heat transfer coefficient
of 20 W m−2 K−1, and by radiation into the sky, which may be assumed to be a black
body with a temperature of 280 K. The emissivity of the plate is ε = 0.92. Determine
the equilibrium temperature of the plate, and the proportions of energy dissipated by
convection and by radiation. (Hint: you will need to find the temperature of the plate
by iteration.)

q̇inc = 500 W m−2

q̇conv = h (Tp − Ta) = 20× (Tp − 300) W m−2

q̇rad = εσ
(
T 4
p − T 4

s

)
= 0.92× 5.67× 10−8

(
T 4
p − 2804

)
W m−2

q̇inc = q̇conv + q̇rad

500 = 20× (Tp − 300) + 0.92× 5.67× 10−8
(
T 4
p − 2804

)
The easiest method to solve the quartic equation, is to rearrange to separate Tp out on its
own on the LHS and make it a function of Tp on the RHS. We can choose either Tp to
separate out – we’ll choose the first one:

Tp =
500− 5.2164× 10−8

(
T 4
p − 2804

)
20

+ 300

Now we guess a value for Tp, put it in on the RHS, calculate the resulting value of Tp on
the LHS, then put that back into the RHS and keep going until it converges. A suitable
initial guess (given that we might expect a car bonnet in the sun, which this is similar to,
to feel quite warm, i.e. around 40 − 50 ◦C or 313 − 323 K) – any sensible initial guess
should result in iteration to 315.26 K, giving proportions of convection and radiation heat
transfer of 61% and 39%, respectively.

N.B. If this didn’t converge, we would try writing the equation to separate out the other
Tp.

Enclosed Systems

A two surface enclosure is a system involving two surfaces which only exchange radiation
with each other. The two surfaces may not be black bodies, and may have differing
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emissivities. In this situation, the net heat transfer may be described by

Q̇ =
σ
(
T 4

1 − T 4
2

)
1− ε1

ε1A1

+
1

A1F1,2

+
1− ε2

ε2A2

For large (infinite) parallel planes, where F1,2 = 1 and A1 = A2 = A, this simplifies
to

Q̇ =
σA
(
T 4

1 − T 4
2

)
1

ε1

+
1

ε2

− 1

while for long (infinite) concentric cylinders, where F1,2 = 1 and A1/A2 = r1/r2, this
simplifies to

Q̇ =
σA1

(
T 4

1 − T 4
2

)
1

ε1

+
1− ε2

ε2

(
r1

r2

)
If one of the bodies is a black body or has a very large area (e.g. the sky), then the equation
simplifies to

Q̇ = σA1ε1

(
T 4

1 − T 4
2

)
If a radiation shield of emissivities εs1 and εs2 on its two sides is inserted between two
large parallel planes to reduce the heat transfer, it can be shown that the rate of heat
transfer is then given by

Q̇ =
σA
(
T 4

1 − T 4
2

)(
1

ε1

+
1

ε2

− 1

)
+

(
1

εs1
+

1

εs2
− 1

)

If the emissivity of the shield is the same on both sides, this simplifies to

Q̇ =
σA
(
T 4

1 − T 4
2

)
1

ε1

+
2

εs
+

1

ε2

− 2

and so on for additional shields.

2.4 The Standard Engineering Equation, and Analogy
with Electrical Circuits

The General Heat Transfer Equation can be expressed in the form of the standard engi-
neering equation, which is:

Rate =
Driving Force

Resistance

Q̇ = UA∆T =
∆T

R
(2.4.1)
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where clearly, the resistance to heat transfer, R, is equal to 1/UA. Remember, this is
only true for steady state conditions; under unsteady state (i.e. changing) conditions, the
differential form of the equation would need to be applied.

This form of equation is most familiar to us as

V = IR

or

I (rate of flow of electrons) =
V (driving force)

R (resistance)

In fact, a circuit-type diagram can be drawn to represent heat transfer, as shown in Fig-
ure 2.4.

Figure 2.4: Resistance diagram for heat transfer.

The concept of using circuit diagrams to represent heat transfer helps when we come to
consider several heat transfer operations in series, such as convection on one side of a
wall, conduction through the wall, and convection heat transfer from the other side. It
becomes very clear that we determine the overall resistance by summing the individual
resistances, as shown in Figure 2.5:

Figure 2.5: Summing heat transfer resistances in series, for convection and conduction
through a wall.

From above

Q̇ = UA∆T =
(Ti − To)

R
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where

R =
1

UA

=
1

A

(
1

hi
+
x

λ
+

1

ho

)
As the areas for heat transfer are equal, we can simplify things by writing

Q̇ = UA∆T

and calculating U directly from

1

U
=

(
1

hi
+
x

λ
+

1

ho

)
Example: Conduction through a wall of two layers

A wall consists of two layers, of thicknesses and thermal conductivities as shown in the
diagram below. The temperature on the inside is 150 ◦C, and on the outside is 20 ◦C,
and the convection heat transfer coefficient on the inside wall is 35 W m−2 K−1, and on
the outside is 20 W m−2 K−1. Assuming close bonding between the two layers, calculate
the temperature at the interface and at the outer walls. Draw a scale diagram showing
the temperature profile. Why, at steady state, is the heat flux across each layer the same,
even though the thicknesses and thermal conductivities are different? How does this hap-
pen?

Calculate the overall heat transfer coefficient, assuming close bonding between the two
layers.

1

U
=

1

hi
+
x1

λ1

+
x2

λ2

+
1

ho

=
1

35
+

0.02

1.2
+

0.04

0.1
+

1

20
= 0.0286 + 0.0167 + 0.4 + 0.05

= 0.4953

N.B. 6 % 3 % 81 % 10 %
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– most of the resistance is in the second layer.

U = 2.02 W m−2 K−1

Calculate the heat flux.

q̇ = U∆T

= 2.02× (150− 20)

= 262.6 W m−2

Note – this same rate of heat transfer must pass from the inside to the wall, through each
layer, and from the wall to the outside

Calculate the temperature at the left hand wall and at the interface between the two lay-
ers.

q̇ = hi∆T

262.6 = 35× (150− T1)

T1 = 142.5 ◦C

q̇ =
λ1

x1

∆T

262.6 =
1.2

0.02
× (142.5− T2)

T2 = 138.1 ◦C

Calculate the temperature at the right hand wall, and check that the final calculation yields
a temperature of 20 ◦C.

q̇ =
λ2

x2

∆T

262.6 =
0.1

0.04
× (138.1− T3)

T2 = 33.1 ◦C

q̇ = ho∆T

262.6 = 20× (33.1− T1)

T1 = 20 ◦C

Sketch the temperature profile on the above picture.

Why, at steady state, is the heat flux across each layer the same, even though the thick-
nesses and thermal conductivities are different? How does this happen?

The heat flux must be the same across each layer, otherwise there would be accumulation
of heat, the temperature would rise, and we would not be at steady state. How this is
achieved is by matching the temperature driving force across each layer to the resistance
– a layer with more resistance requires a larger temperature driving force to get the same
amount of heat through it. Remember the units of resistance, K W−1 i.e. the temperature
driving force required to achieve 1 W of heat transfer. A larger resistance means a larger
temperature driving force is required.
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2.5 Problems

1. A tank of water is kept boiling with an internal 10 kW heater, and loses energy
through evaporation and through the walls of the tank. The surrounding environ-
ment has a temperature of 20 ◦C.

(a) Calculate the heat loss through the walls, which are made of 5 mm thick stain-
less steel with a total surface area of 2.8 m2. Calculate the percentage of re-
sistance to heat transfer contributed by the boiling water, the walls and the air.
Assume natural convection of the air. Which is the controlling resistance?

(b) Calculate the rate of evaporation of water.

Data:

Thermal conductivity of stainless steel = 19 W m−1 K−1

Latent heat of vaporisation of water = 2257 kJ kg−1

Take the convective heat transfer coefficient for boiling water to be about 45000
W m−2 K−1, and for air under free convection to be 35 W m−2 K−1.

2. A thermocouple is located inside a ceramics oven for temperature control. The
walls of the oven are at 600 ◦C, and the air temperature is 527 ◦C. The thermocouple
can be assumed to be spherical with a diameter of 2 mm, and to have a uniform
temperature throughout.

Assuming that both the oven walls and the thermocouple are black bodies with
respect to radiation, calculate the steady state temperature that would be recorded
by the thermocouple for an air velocity of 4 m s−1 if the convection heat transfer
coefficient can be found from the following correlation:

hD

l
= 0.37Re0.6

Comment on the recorded measurements. Suggest how a more accurate air temper-
ature reading could be obtained. [Hint: you will need to determine the steady state
temperature iteratively.]

Data: Physical properties of air at 527 ◦C

ρ = 0.435 kg m−3

µ = 0.370× 10−4 Pa s

λ = 0.0577 W m−1 K−1
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3.1 Introduction

Conduction is the mechanism of heat transfer in solids. Solids tend to have temperature
distributions or profiles across them, i.e. they are hotter on the outside or inside, or on
one side etc. Fluids tend to be well-mixed, so that we are not really concerned about
their temperature distribution – it tends to even out to a uniform temperature just through
mixing. But solids don’t – heat is transferred by conduction, and the nature of the heat
transfer depends on the temperature distribution. We noted earlier that “Since heat flow
takes places whenever there is a temperature gradient in a system, a knowledge of the
temperature distribution in a system is essential in heat transfer studies.” So we now want
to consider how to calculate firstly the temperature distribution in a system, and from it
the heat transfer rate.

3.2 Derivation of one-dimensional conduction heat trans-
fer equation

To do this we will develop the basic mathematical equation which describes the temper-
ature distribution through a system. We will do this based on the energy conservation
equation, which we will apply to a very small element. As we noted earlier when we
were considering energy balances, conservation of energy applies whether we are con-
sidering a whole plant, a single item of equipment, or a small differential element within
some equipment. Here we are going to consider conservation of energy over a small
differential element.

To simplify the mathematical notation, and to illustrate the meaning of the terms in the
equation, we will start by considering just one-dimensional conduction. This would apply
when considering, for example, conduction through a wall where the height and width of
the wall are very large compared with its thickness, so that essentially there is no differ-
ence in temperature along the height or width, and the only difference to be considered is
that across the thickness of the wall.

So, considering one-dimensional heat conduction in the x-dimension, consider a volume
element of thickness ∆x and area normal to the x-direction, as shown in Figure 3.1 below.

Figure 3.1: Nomenclature for derivation of the one-dimensional heat conduction equation.
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An energy balance for this volume element is stated as(
Net rate of heat gain

by conduction

)
+

(
Rate of

energy generation

)
=

(
Rate of increase

of internal energy

)
I II = III

Note that this energy balance does not assume steady state, and it includes the possibility
of energy generation. This energy generation could arise from, for example, electrical
resistance, nuclear reaction, or chemical reaction. Each of the terms I, II and III will be
considered in turn.

I Net rate of heat gain by conduction

Heat enters the volume element by conduction through the area A normal to the x-
coordinate at the point x, and leaves by conduction through the area A at the point
x+ ∆x. Let q̇ be the conduction heat flux (heat flow per unit area, W m2) at point x
in the positive x-direction at the surface A of the element. Then the rate of heat flow
into the volume element through the surface A at location x is written as

[Aq̇]x

Similarly, the rate of heat flow out of the element by conduction at the location x +
∆x is given by

[Aq̇]x+∆x

Then the net rate of heat flow by conduction into the element is the difference be-
tween the flow in and flow out:

I ≡ [Aq̇]x − [Aq̇]x+∆x

II Rate of energy generation

The rate of energy generation in an element of volume ADx is given by

II ≡ A∆xg

where g = g(x, t) is the energy generation per unit volume (W m3) at the point x and
at time t.

III Rate of increase of internal energy

The relationship between the rate of energy input into a mass of material and the rate
of energy change is given by

Q̇ = mCp
dT

d t
kg× J

kg K
× K

s
= W

Mass is given by density × volume, therefore

III ≡ A∆xρCp
∂ T (x, t)

∂ t

Note that we use the partial derivative, ∂, as we are considering in the term the change
in temperature with respect to time, but not distance.
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Putting it all together, rearranging slightly and dividing through by the volume, A∆x, we
get:

[Aq̇]x − [Aq̇]x+∆x + gA∆x = A∆xρCp
∂ T (x, t)

∂ t

− 1

A

[Aq̇]x − [Aq̇]x+∆x

∆x
+ g = ρCp

∂ T (x, t)

∂ t

Now, as ∆x tends to 0, the first term on the left hand side becomes, by definition, the
derivative of [Aq̇] with respect to x (that’s why we’ve written it this way). So the equation
becomes

−1

x

∂ (Aq̇)

∂ x
+ g = ρCp

∂ T (x, t)

∂ t

Here, the first term describes the change of heat flow with distance, x. The negative sign
arises because heat flow is defined as positive into the system and negative out of it, but
the definition of the derivative with respect to x reverses this order.

Now, from Fourier’s law, the heat flux, q̇, is given by the temperature gradient times the
thermal conductivity (with an appropriate negative sign):

q̇ = −λ∂ T (x, t)

∂ x

Substituting into the first term of the above equation gives

General Heat Conduction Equation
1

A

∂

∂ x

(
Aλ

∂ T

∂ x

)
+ g = ρCp

∂ T (x, t)

∂ t

This is the general heat conduction equation. The first term represents the net rate at which
heat flows by conduction into the system. Heat flows by conduction only when there is a
temperature gradient, so this term includes, inside the brackets, the temperature gradient,
without which there would be no flow of heat through the system at all. But if there were
no difference in the rate of flow of energy into and out of the system by conduction, there
would be no accumulation, so the temperature would not change. This is why there is an
additional differentiation with respect to x. If there is a difference (i.e. this differential is
not equal to 0), it will show up as an accumulation within the system, so the temperature
would change with time. This is shown by the term on the right hand side.

If there were internal energy generation somehow, this would also cause the temperature
to change with time. So the two terms on the left are potential sources by which the
temperature might change with time, and the term on the right describes the rate at which
the temperature would change with time due to these sources.

Now, you might say that the area in the first term doesn’t change with distance in the
xdirection, so we could take it out of the differential and cancel it with the 1/A. And
you would be right, for rectangular co-ordinates. But what about cylindrical or spherical
coordinates? In these cases, area does change with distance. So let’s take our general
equation and write it out for all three co-ordinate systems.
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3.2.1 Rectangular Coordinates

These are our familiar, Cartesian, x, y, z coordinates, and in this system of coordinates,
area normal to the x-direction does not change as x increases. SoA in the general equation
is constant, and the equation simplifies to

∂

∂ x

(
λ
∂ T

∂ x

)
+ g = ρCp

∂ T (x, t)

∂ t

This is the one-dimensional, time-dependent heat conduction equation in the rectangular
coordinate system.

3.2.2 Cylindrical Coordinates

In cylindrical co-ordinates our three axes are given by r, φ, and z, and for one-dimensional
heat conduction we are concerned with conduction in the radial direction, r. Area in-
creases proportionally with r, so the general equation becomes

1

r

∂

∂ r

(
rλ
∂ T

∂ r

)
+ g = ρCp

∂ T (r, t)

∂ t

This is the one-dimensional, time-dependent heat conduction equation in the cylindrical
coordinate system.

3.2.3 Spherical Coordinates

In spherical co-ordinates, once again we denote the radial coordinate by r instead of x. In
this case, area A is proportional to r2, so the general equation becomes

1

r2

∂

∂ r

(
r2λ

∂ T

∂ r

)
+ g = ρCp

∂ T (r, t)

∂ t

This is the one-dimensional, time-dependent heat conduction equation in spherical coor-
dinates.

3.2.4 Special Cases

Let’s consider some special cases, which will help us understand what each of the terms
means in a physical sense. And, to avoid excessive brain strain, let’s look just at the
familiar rectangular co-ordinate system, for which the equation is

∂

∂ x

(
λ
∂ T

∂ x

)
+ g = ρCp

∂ T (x, t)

∂ t
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Constant Thermal Conductivity

If the thermal conductivity, λ, were constant, then we could take it out of the first term.
We could also divide through by λ, to give

∂

∂ x

(
∂ T

∂ x

)
+
g

λ
=
ρCp
λ

∂ T (x, t)

∂ t

∂2 T

∂ x2 +
g

λ
=

1

α

∂ T

∂ t

where α is the thermal diffusivity (λ/ρCp). The thermal diffusivity is a measure of the
rate at which heat is propagated through a medium; the larger the thermal diffusivity, the
faster heat is propagated.

No Internal Energy Generation

If, in addition, there were no internal energy generation, and we were just considering
pure conduction heat transfer, then we get

∂2 T

∂ x2 =
1

α

∂ T

∂ t
Fourier Equation

This means quite simply that the rate of change of temperature, which indicates a rate of
change of internal energy, must be balanced by the net rate at which energy is flowing by
conduction into the system.

No Heat Conduction

If both surfaces of the system were well insulated so that there was no conduction into or
out of the element, then the equation becomes

g

λ
=

1

α

∂ T

∂ t

which is equivalent to

g = ρCp
∂ T

∂ t

then multiply both sides by m3 to get

Power (W) = mCp
∂ T

∂ t

This quite clearly means that the rate of energy generation is balanced by the rate of
change of temperature of the material.
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Steady State Heat Conduction

Under steady state conditions, there is no change with respect to time. Therefore the right
hand side of the above equation must be zero:

d2 T

dx2 +
g

λ
= 0 Poisson Equation

Note that for steady state conditions the derivatives are no longer partial, so d is used
instead of ∂.

If there is also no internal energy generation, then

d2 T

dx2 = 0 Laplace Equation

This is the Laplace equation, and it simply means that, while there is a temperature gradi-
ent causing conduction heat flow (i.e. the first derivative is not zero), there is no difference
in the heat flow that would cause accumulation (i.e. the second differential does equal
zero), so there is no accumulation and therefore no temperature change.

If there is internal energy generation, then the Poisson equation simply means that the rate
of internal energy generation is balanced by the rate of conduction out of the system, and
there is no accumulation and no temperature change.

Equivalent equations exist for cylindrical and spherical co-ordinates (see below), and for
three-dimensional heat conduction. For three dimensional steady state heat conduction
with no internal energy generation, Laplace’s equation becomes

∂2 T

∂ x2 +
∂2 T

∂ y2 +
∂2 T

∂ z2 = ∇2T = 0

which is the three-dimensional form of Laplace’s equation.

Table 3.1: Summary of the Poisson and Laplace equations in different coordinate systems.

Coordinate System Poisson equation Laplace equation

Rectangular
d2 T

dx2 +
g

λ
= 0

d2 T

dx2 = 0

Cylindrical
1

r

d

d r

(
r

dT

d r

)
+
g0

λ
= 0

d

d r

(
r

dT

d r

)
= 0

Spherical
1

r2

d

d r

(
r2 dT

d r

)
+
g0

λ
= 0

d

d r

(
r2 dT

d r

)
= 0

3.2.5 Physical Meaning of the Laplace Equation

Heat flow by conduction is proportional to the temperature gradient...



3.2. DERIVATION OF ONE-DIMENSIONAL CONDUCTION HEAT TRANSFER EQUATION39

There will only be accumulation of heat if the temperature gradient changes...

Let’s think about the relationship between the physical situation and the mathematics
describing that physical situation a bit further. The figure below shows an instantaneous
temperature profile in a solid slab of thickness L. The temperature profile might arise, for
example, because the slab has been plunged into hot water such that the sides have begun
to heat, while the centre is still cool. Eventually the whole slab will heat to the same
uniform temperature throughout, but at a given moment in time, the temperature profile
is as shown in the figure. For the sake of illustration, it can be described by a quadratic
function, as shown to the right of the figure.

Sketch the profiles of dT/dx, q̇ and d2T/dx2 across the slab, based on thinking about
what is going on physically as indicated by the figure, and based on differentiating the
mathematical expression describing the physical situation. To simplify the maths, assume
λ = 1 W m−1 K−1.
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3.3 Steady State Heat Conduction across a Slab

Consider a slab of thickness L, with the temperature of the walls maintained at T1 and
T2, respectively. There is no energy generation in the solid, and thermal conductivity
is constant. Develop expressions for the temperature distribution, T (x), and heat flux
through the slab.
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The mathematical formulation of this steady state heat conduction problem with no in-
ternal energy generation and constant thermal conductivity is given by Laplace’s equa-
tion:

d2 T (x)

dx2 = 0

where T (x) = T1 at x = 0 and T (x) = T2 at x = L

Integrating once gives
dT (x)

dx
= C1

and again gives
T (x) = C1x+ C2

We have two equations, and two boundary conditions. From the boundary condition at
x = 0, we get

C2 = T1

Then, from the boundary condition at x = L, we get

T2 = C1L+ T1

C1 =
(T2 − T1)

L

Therefore the equation describing the variation of T with x is

T (x) = (T2 − T1)
x

L
+ T1
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which is a straight line starting at T1, with slope (T2 − T1)/L. If T2 < T1, then this slope
is negative, and heat flows from T1 to T2.

So we know the temperature distribution. But we want to know the heat flowrate or flux.
This we get from Fourier’s law:

q̇ = −λdT

dx

Differentiating our temperature distribution with respect to x gives

dT

dx
=

(T2 − T1)

L

Therefore
q̇ (x) = −λ

L
(T2 − T1)

or
Q̇ =

λ

L
A∆T

which is the same (essentially) as the conduction heat transfer equation which we devel-
oped earlier. Note that q̇(x) is independent of x, i.e. is the same throughout the slab.

So we have learned from this exercise that we solve the general heat conduction equation
by integrating, and we find the constants of integration from the boundary conditions.
We therefore need as many boundary conditions as constants of integration (two in this
case). We have also learned that, having found the temperature distribution in this way, we
differentiate it to find the heat flux, and that the equation obtained in this way is the same
as that which we encountered earlier for describing heat conduction through a slab – in
other words, what we are learning now is no different to what we learned about conduction
earlier, it’s just that we’ve made the fundamental basis for it more explicit.

3.4 Steady State Heat Generation in a Slab Insulated on
One Side

Consider a slab of thickness L and constant thermal conductivity λ in which energy is
generated at a constant rate of g0 W m3. The boundary surface at x = 0 is insulated
so that there is no heat flow across this boundary, and that at x = L dissipates heat by
convection into a fluid at temperature Tf with a heat transfer coefficient h.

In this example, there is energy generation in the medium. This could apply to an electri-
cal heating element or a nuclear fuel rod, for example. This means that we are unable to
calculate the heat flow by considering the driving force and resistance to flow – we cannot
use the resistance approach when there is energy generation. To solve this one, we need
to solve the heat conduction equation.
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The mathematical formulation of the steady state problem is given by the Poisson equa-
tion:

d2 T

dx2 = −g0

λ

with boundary conditions,

dT (x)

dx
= 0 at x = 0 (no heat flux must mean there is no temperature gradient)

q̇ = −λdT (x)

dx
= h (T (x)− Tf ) at x = L

i.e. the rate of heat loss by conduction at the surface must equal the rate at which heat is
removed by convection. Therefore

T (L) = Tf −
λ

dT

dx

∣∣∣∣
x=L

h

Integrating the Poisson equation gives

dT (x)

dx
= −go

λ
x+ C1

Putting in x = 0 shows that C1 = 0.

The expression for the heat flux is given by substituting into Fourier’s law:

ġ = −λdT

dx
= g0x

note, the heat flux varies with position across the slab.

This also allows us to simplify our boundary condition expression for T (L):

T (L) = Tf +
g0L

h
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Integrating again gives
T (x) = − go

2λ
x2 + C2

Applying the boundary condition at x = L gives

T (L) = − go
2λ
L2 + C2 = Tf +

g0L

h

Therefore
C2 =

go
2λ
L2 +

g0L

h
+ Tf

Therefore the temperature distribution becomes

T (x) = − go
2λ
x2 +

go
2λ
L2 +

g0L

h
+ Tf

=
go
2λ
L2

(
1−

(x
L

)2
)

+
g0L

h
+ Tf

The physical significance of these terms is that the first is due to the energy generation,
and the second to the presence of the finite convection heat transfer coefficient at the
surface. If this were infinite, this term would vanish.

Note that the temperature distribution is not uniform across the slab (it is parabolic), and
neither is the heat flux (which is linear with respect to x, starting at 0).

3.5 Temperature Profiles across Cylindrical Walls

Cylindrical systems are very frequently encountered in the process industries, in partic-
ular in pipework. Often we have pipes conveying hot fluids, and it is important that we
know the temperature distribution and therefore heat losses across the pipe walls. Other
examples include heat generation in cylindrical fuel elements in nuclear reactors or in
electrical wires carrying currents.

The steady state heat conduction equation with constant, uniform energy generation for
the cylindrical co-ordinate system is given by

1

r

d

d r

(
r

dT

d r

)
+
g0

λ
= 0

or,
d

d r

(
r

dT

d r

)
= −g0

λ
r

Integrating twice gives

dT (r)

d r
= − g0

2λ
r +

C1

r

T (r) = − g0

4λ
r2 + C1 ln r + C2

Clearly, we need two boundary conditions to determine the two integration constants.
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To solve this for a solid cylinder with energy generation (e.g. a wire carrying current), we
would specify the surface temperature and that the heat flux at the centre of the wire = 0,
due to the temperature gradient at the centre being 0 (as the cylinder is symmetric).

Let us consider the more common (for process engineers) situation of a hollow pipe
with no internal energy generation containing flowing fluid, where the inner surface at
r = ri and the outer surface at r = ro are maintained at temperatures Ti and To, respec-
tively.

Therefore the above equations become

dT (r)

d r
=
C1

r
T (r) = C1 ln r + C2

The boundary conditions give us

Ti = C1 ln ri + C2

To = C1 ln ro + C2

Simultaneous solution of these equations gives

C1 =
To − Ti

ln

(
ro
ri

)
C2 = Ti − (To − Ti)

ln ri

ln

(
ro
ri

)
Introducing these into the above equation for T (r) gives

T (r) =
To − Ti

ln

(
ro
ri

) ln r + Ti − (To − Ti)
ln ri

ln

(
ro
ri

)
= Ti + (To − Ti)

ln r − ln ri

ln

(
ro
ri

)
from which

T (r)− Ti
To − Ti

=

ln

(
r

ri

)
ln

(
ro
ri

)
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The heat flux is given, as usual, by Fourier’s law:

q̇ = −λdT (r)

d r

From earlier,
dT (r)

d r
=
C1

r
=

1

r

To − Ti

ln

(
ro
ri

)
Hence

q̇ =
λ

r

Ti − To

ln

(
ro
ri

)
In other words, q̇ is inversely proportional to r. The equation above tells us the tempera-
ture profile across the wall of the tube. If Ti is arbitrarily assigned a value of 1, and To a
value of 0, then the temperature profile would be as follows, for different ratios of ro/ri,
Figure 3.2.

T (r)

r

ri

ro
ri

2
3
4

1

0
1 2 3 4

Figure 3.2: Example temperature profile through a cylinder.

Q̇, the product of the heat flux× the area, must be constant (heat must enter one side of the
pipe wall at the same rate that it exits the other side). The heat flux therefore decreases as
the radius increases, because the area increases proportionally to the radius. The decrease
in q̇ is reflected by the change in the slope of dT/d r as r increases.

Now we want to know the heat flowrate out of the pipe:

Q̇ = q̇ × A = − λdT (r)

d r
2πrH

= − λ1

r

1

ln

(
ro
ri

) (To − Ti) 2πrH

=
2πHλ (Ti − To)

ln

(
ro
ri

)
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Comparing with

Q̇ =
(Ti − To)

R

clearly, the resistance to heat transfer is given by

R =
1

UA
=

ln

(
ro
ri

)
2πHλ

This analysis is appropriate when the thickness of the pipe walls is large compared with
the pipe radius. For thin-walled pipes (where the pipe thickness is small compared with
the radius), a rectangular approximation can be used.

Alternatively, the log-mean area, Am, can be used, defined by

R =
x

λAm
=

(ro − ri)
λAm

=

ln

(
ro
ri

)
2πHλ

Am =
(ro − ri) 2πH

ln

(
ro
ri

) =
(Ao − Ai)

ln

(
Ao
Ai

)

The log-mean area will be useful for heat exchanger calculations.

3.6 Temperature Profiles Across Spherical Walls

Spherical or hemi-spherical shaped containers are often used in the process industries,
because the have the minimum surface area per unit volume (so minimise heat losses)
and have uniform distribution of stresses within the container walls. It is left as a tutorial
exercise for students to show that the temperature distribution across the wall of a hollow
spherical container of constant thermal conductivity, with inner and outer surfaces main-
tained at temperatures Ti and To respectively, for steady state heat conduction with no
internal energy generation, is given by

T (r) =
ri
r

ro − r
ro − ri

Ti +
ro
r

r − ri
ro − ri

To

and the heat flow by
Q̇ = 4πλ

riro
ro − ri

(Ti − To)

The resistance can then given by

R =
1

4πλ

ro − ri
riro
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3.7 Boundary Conditions

We have been using boundary conditions throughout the last two lectures to determine
the constants of integration that arise when we solve the heat conduction equation. It is
not always immediately obvious what the boundary conditions are or how to use them. It
is therefore helpful to point out that there are generally three types of boundary condition
âĂŞ if you know this, it will help you spot them. The three types are the Prescribed
Temperature (First Kind), Prescribed Heat Flux (Second Kind) and Convection (Third
Kind) Boundary Conditions.

3.7.1 Prescribed Temperature Boundary Condition (First Kind)

This situation occurs simply when the temperature at a surface is considered known. This
might occur when, for example, a boundary surface is in contact with melting ice or
condensing steam at atmospheric pressure, so that the surface is known to be at a constant
temperature of 0 ◦C or 100 ◦C, respectively.

If a slab of thickness L has its surface at x = 0 maintained at temperature T1, and its
surface at x = L maintained at temperature T2, then the slab has prescribed temperature
boundary conditions at both surfaces, and these are written as

T (x, t)|x=0 ≡ T (0, t) = T1

T (x, t)|x=L ≡ T (L, t) = T2

More generally, the distribution of temperature over the boundary surface may be speci-
fied as a function of position and/or time. Either way, when the value of temperature at a
surface is specified, this is known as a boundary condition of the first kind.

3.7.2 Prescribed Heat Flux Boundary Condition (Second Kind)

In some situations, the rate at which heat is supplied to (or removed from) a surface is
known, for example, if the surface is being electrically heated or heated by thermal (e.g.
solar) radiation.
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If a slab of thickness L has a heat supply of q̇0 W m2 to its surface at x = 0, and a heat
removal of q̇L W m2 to its surface at x = L, then the slab has prescribed heat flux boundary
conditions at both surfaces. These external heat supplies are equated with the conduction
heat flux into the solid, and are written as:

−λ ∂ T
∂ x

∣∣∣∣
x=0

= q̇0

−λ ∂ T
∂ x

∣∣∣∣
x=L

= q̇L

When the heat flux is prescribed at a boundary surface, this is known as a boundary
condition of the second kind. Similar equations apply to the boundary surfaces of spheres
and cylinders, replacing x with r in the above equations.

Sometimes the prescribed heat flux boundary condition is invoked from the symmetry of
a system. For example, sometimes we have a solid slab, cylinder or sphere with internal
heat generation, and we are only given a single surface temperature, but we need two
boundary conditions to determine our two constants of integration. We can determine
the other boundary condition by considering the symmetry of the system, which says
that at the centre, the temperature profile must be flat, therefore dT/dx = 0, therefore
q̇ = 0.

3.7.3 Convection Boundary Condition (Third Kind)

In most practical situations, heat transfer at the boundary of a solid is by convection into
an ambient fluid with a prescribed temperature, and with a known heat transfer coefficient
h.

Consider again a slab of thickness L with a fluid at temperature Tf1 flowing over its
surface at x = 0 with a heat transfer coefficient of h1. The mathematical formulation of
the convection boundary condition is obtained by considering an energy balance at the
surface:
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 Convection heat flux
from the fluid at Tf1 to

the surface at x = 0

 =

 Conduction heat flux
from the surface at
x = 0 into the plate


h1 [Tf1 − T (x, t)|x=0] = − λ ∂ T

∂ x

∣∣∣∣
x=0

If a fluid at temperature Tf2 with heat transfer coefficient h2 flows over the surface at
x = L, the energy balance is staged as

h2 [T (x, t)|x=L − Tf2] = −λ ∂ T
∂ x

∣∣∣∣
x=L

A convection boundary condition is known as a boundary condition of the third kind. The
convection boundary condition is the most general of the three – in fact, the other two
are just special cases (see Ozisik for the reasoning why). The solution of conduction heat
transfer problems hinges on the boundary conditions, and these are usually convection
boundary conditions. This means that the next key to solving heat transfer problems is
knowing how to calculate the convection heat transfer coefficient.
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3.8 Problems

1. A commercial freezer is to be maintained at −18 ◦C. The freezer is insulated with
glass wool insulation sandwiched between two sheets of aluminum. Calculate the
thickness of glass wool insulation required (λ = 0.04 W m−1 K−1) if the external
wall temperature is 25 ◦C, and the heat flux into the freezer is 170 W m−2. Ignore
the thermal resistance of the aluminum sheets. How will a variation of 1 ◦C in the
external wall temperature impact on the thickness of insulation required?

[1 cm]

2. A furnace wall is made up of three layers, the inner one of firebrick, the middle
one of insulating brick and the outer one of red brick, of thermal conductivities
1.21, 0.13, and 0.85 W m−1 K−1, respectively, and thicknesses 200 mm, 70 mm, and
95 mm, respectively. The inner wall is at 900 ◦C, and the heat flux is 1000 W m−2.
Assuming close bonding between each layer at their interfaces, calculate the tem-
perature at each interface and at the outer wall. Is the outer wall at a safe tem-
perature for nearby personnel? Which is the controlling resistance? Draw a scale
diagram showing the temperature profile.

[900 ◦C, 735 ◦C, 196 ◦C, 84 ◦C]

3. A stainless steel fermentation vessel is to be maintained at 37 ◦C. The vessel has
a cylindrical central section 2 m in diameter and 3 m in height, and the top and
bottom of the vessel are hemispherical in shape with a 2 m diameter. The liq-
uid in the vessel comes to the top of the central cylindrical section. Estimate
the rate at which heat must be supplied to maintain the vessel temperature, if
the surroundings are at 10 ◦C. Take the liquid-side convective heat transfer coef-
ficient to be 200 W m−2 K−1, the internal air convective heat transfer coefficient
to be 30 W m−2 K−1, and the external air convective heat transfer coefficient to be
7 W m−2 K−1. Ignore the thickness of the walls and the thermal resistance of the
stainless steel, and ignore radiative heat losses.

[5.55 kW]

4. The temperature of the water in a pipe is measured using a thermocouple, which
may be considered a sphere of diameter 2 mm, thermal conductivity 25 W m−2 K−1,
density 8400 kg m3, and specific heat capacity 400 J kg−1 ◦C−1. The heat transfer
coefficient between the water and the thermocouple is 700 W m−2 K−1. Is a lumped
system analysis applicable? If the temperature of the water flowing past the thermo-
couple suddenly changes from 10 ◦C to 40 ◦C, how long will it take for the thermo-
couple to reach a reading of 39 ◦C? What is the time constant for the thermocouple?

[Yes (Bi = 9.33× 10−3 < 0.1), 5.44 seconds, 1.6 seconds]

5. A wall is made up of three layers, the inner one of wood, the middle one of insu-
lating glass wool and the outer one of cork, of thermal conductivities 0.112, 0.038
and, 0.04 W m−1 K−1, respectively, and thicknesses 12 mm, 20 mm and 16 mm, re-
spectively. Air on the inner face of the wall is at 90 ◦C, and transfers heat with a
convective heat transfer coefficient of 27 W m−2 K−1, while air on the outer face of
the wall is at 5ÂřC and has a convective heat transfer coefficient of 8 W m−2 K−1.
Assuming close bonding between each layer at their interfaces, calculate the over-
all heat transfer rate and the temperature at the wall surfaces and at the interfaces
within the wall. Sketch the temperature profile.
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[71.1 W m−2, 87.37 ◦C, 79.75 ◦C, 42.33 ◦C, 13.89 ◦C]

6. In many practical situations, heat transfer takes place simultaneously by convection
to (or from) the ambient air and by radiation to (or from) the surroundings. Com-
bined convection and radiation problems often require an iterative solution. Note
that the temperature driving force for convective and radiative heat transfer may
be different. A small, thin metal plate of area Am2 is kept insulated on one side
and exposed to the sun on the other. The plate absorbs solar energy at a rate of
500 W m−2, and dissipates heat by convection to the ambient air at Ta = 300 K
with a convection heat transfer coefficient of 20 W m−2 K−1, and by radiation into
the sky, which may be assumed to be a blackbody with a temperature of 280 K. The
emissivity of the plate is ε = 0.92. Determine the equilibrium temperature of the
plate, and the proportions of energy dissipated by convection and radiation. (Hint:
you will need to find the temperature of the plate by trial and error.)

[315.26 K, 61%, 39%]

7. Heat is lost by both convection and radiation from a steam pipe of 4 cm outer di-
ameter with a wall surface temperature of 125 ◦C, into an external environment at
0 ◦C. The convection heat transfer coefficient is 20 W m−2 K−1, and the emissivity
of the pipe surface is 0.92. Calculate the rate of heat loss per metre of pipe, and the
proportions of heat transfer contributed by convection and radiation.

[442.5 W/metre of pipe, 71%, 29%]

8. A room in Scotland has a glass window of width 1.5 m and height 2 m, 5 mm thick
and with a thermal conductivity λ = 1.4 W m−1 K−1. In the middle of winter, the
air on the inside and outside of the glass is at 20 ◦C and −10 ◦C, respectively, with
convection heat transfer coefficients of 25 W m−2 K−1 and 15 W m−2 K−1, respec-
tively. The window is the only source of heat loss from the room, which is kept
warm via an electric heater.

(a) Calculate the rate of heat loss through the window and hence the power re-
quirement of the heater. Assuming the heater is on for 24 hours per day,
estimate the daily cost of heating the room, basing your answer on a typical
domestic cost for electricity in the UK (i.e. check a recent electricity bill,
quoting the supplier).

(b) The window is replaced by a double glazed window in which two 5 mm thick
panes of glass are separated by a 10 mm air gap (thermal conductivity of still
air is 0.024 W m−1 K−1. Calculate the rate of heat loss through the new win-
dow, and the percentage contribution of each resistance.
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4.1 Introduction

We noted when we first came across convection heat transfer that it could be easily de-
scribed using the convection heat transfer coefficient, h. However, we also noted that
h depends on the fluid mechanics of the system, such as the type of flow (turbulent or
laminar), the geometry of the system, the physical properties of the fluid, the average
temperature, the position along the surface of the body, and whether the heat transfer is
by forced convection or free convection. We said then that we would look at how to cal-
culate h later in the course. To do so, we need to develop a picture of how convection
heat transfer occurs, then find ways of relating the fluid mechanics to the heat transfer.
Complete description of convection heat transfer would require solution of the equations
of continuity, momentum and energy, which is beyond the scope of this course.

4.2 Thermal Boundary Layer

In Fluid Mechanics, you learned about the concept of a velocity boundary layer, which
was the layer of fluid flowing near to the wall, in which the velocity of the fluid increased
from zero at the wall up to close to the free stream velocity of the fluid far from the wall.
Analogous to this idea, we can imagine the development of a thermal boundary layer, in
which the temperature of a fluid flowing past a wall varies from the wall temperature to
the bulk fluid temperature, as shown in Figure 4.1. Note that x represents direction along
the wall surface, and y direction normal to the wall.

Figure 4.1: Development of the thermal boundary layer for flow over a wall.

The thermal boundary layer is the locus of points at which the temperature is equal to
99the bulk fluid temperature, i.e. T (x, y) = 0.99T∞ at δt(x).

The thicknesses of the thermal boundary layer and the velocity boundary layer are not
necessarily the same! The relative thickness depends on the Prandtl number, which is a
dimensionless number

Pr =
Cpµ

λ

Pr =

µ

ρ
λ

ρCp

=
v

α
=

momentum diffusivity
thermal diffusivity

=
δ(x)

δt(x)
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The Prandtl number is a measure of the ratio of momentum diffusivity to heat diffusivity.
If this ratio is equal to unity, as it is for gases, then the thermal and velocity boundary
layers have the same thickness, i.e.

δ(x) = δt(x) for Pr = 1 (gases)

For fluids for which Pr � 1, such as liquid metals, the thermal boundary layer is much
thicker than the velocity boundary layer i.e. heat is propagated through the fluid to a
greater extent than momentum. For fluids for which Pr� 1, such as ordinary liquids and
oils, the thermal boundary layer is much thinner than the velocity boundary layer.

4.3 Relating Convection Heat Transfer to Fluid Mechan-
ics using Dimensionless Numbers

Suppose the temperature distribution, T (x, y), in the thermal boundary layer were known.
Then the heat flux from the fluid to the wall at the point x along the wall would be given
by

q̇ (x) = λf
∂ T (x, y)

∂ y

∣∣∣∣
y=0

where λf is the thermal conductivity of the fluid. (Note we are omitting the negative sign
for convenience.) But we don’t generally know the temperature distribution, so instead
we define a local heat transfer coefficient h(x) such that the heat flux between the fluid
and the wall at point x along the surface of the wall is given by

q̇ (x) = h (x) (T∞ − Tw)

Note that the local heat transfer coefficient can vary along the wall i.e. h(x) is a function
of x. Equating the above two equations gives

h (x) = λf

∂ T

∂ y

∣∣∣∣
y=0

T∞ − Tw

Let us now define a dimensionless temperature θ(x, y) as

θ (x, y) =
T (x, y)− Tw
T∞ − Tw

Clearly, θ(x, y) will vary from 0 at the wall to 1 in the bulk fluid. We can then write the
above equation in terms of this dimensionless temperature as

h (x) = λf
∂ θ (x, y)

∂ y

∣∣∣∣
y=0
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4.4 Laminar Flow along a Flat Plate

An approximate expression for the temperature profile in the thermal layer for laminar
flow along a flat plate is given by

θ (x, y) =
3

2

y

δt (x)
− 1

2

[
y

δt (x)

]3

Similarly, an expression for the thickness of the thermal boundary layer is given by

δt (x) = 4.53
x

Re0.5
x Pr0.333

where the local Reynolds number, Rex is defined as

Rex =
u∞x

v

where u∞ is the bulk fluid velocity, v is the kinematic viscosity (µ/ρ), and x is the distance
along the plate.

The heat transfer coefficient is related to the temperature profile by

h (x) = λf
∂ θ (x, y)

∂ y

∣∣∣∣
y=0

∂ θ (x, y)

∂ y

∣∣∣∣
y=0

=
3

2δt (x)

Therefore
h (x) =

3λf
2δt (x)

Substituting in our expression for δt(x) gives

h (x) =
3λfRe0.5

x Pr0.333

2× 4.53× x

= 0.331
λf
x

Re0.5
x Pr0.333

Rearranging to give three dimensionless groups gives

Nux =
h (x)x

λf
= 0.331Re0.5

x Pr0.333

where Nux is the local Nusselt number, and is a function of the Prandtl and Reynolds
numbers. Note that h(x) varies with x−0.5, i.e. the convection heat transfer coefficient
along the length of the wall decreases, as we noted earlier.

In fact, the exact expression for laminar flow along a flat plate is given by

Nux =
h (x)x

λf
= 0.332Re0.5

x Pr0.333



58 CHAPTER 4. HEAT TRANSFER BY CONVECTION

so our analysis is pretty close. The range of application for this correlation is Rex <
5× 105, 0.6 < Pr < 10, and it applies when the wall temperature of the plate is constant
along the plate.

The above example introduces the Nusselt number, which is an important dimensionless
group for describing convection heat transfer. Looking closely at the general form of the
Nusselt number, using a characteristic dimension L, it is clearly a ratio of

Nu =
hL

λf
=

h∆T

λf
L

∆T

which can be interpreted as the ratio of convection heat transfer to conduction heat transfer
across the thermal boundary layer.

The example also demonstrates that the Nusselt number is a function of the Reynolds
and Prandtl numbers, which describe the fluid mechanics of the system. This sort of
expression therefore gives us our goal, which was to relate the convection heat transfer
coefficient to the fluid mechanics. Knowing the fluid mechanics, we can calculate Re and
Pr, and from these predict the convection heat transfer coefficient. Similar expressions
have been developed for other systems e.g. flow in tubes, along ducts, turbulent flow etc.
Clearly in these cases the temperature profile and thermal boundary layer profile will be
different, so the equations will be different, but they often have this general form. In the
next lecture we will look at some of these.

4.5 Correlations for Predicting the Convection Heat Trans-
fer Coefficient

4.5.1 Forced Convection, Fully Developed Turbulent Flow in Smooth,
Circular Pipes

One correlation (among many!) for forced convection fully developed turbulent flow
inside smooth tubes is given by the Sieder and Tate equation:

Nu = 0.027Re0.8Pr0.333

(
µb
µw

)0.14

This equation is applicable for the following range of conditions:

• 0.7 < Pr < 16, 700

• Re > 10, 000 (Re = umD/v)

• L/D > 60

• smooth pipes

The term (µb/µw)0.14 is a correction factor which accounts for the fact that the fluid vis-
cosity changes with temperature near the wall.
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Calculation of convection heat transfer coefficient and heat flux for turbulent flow
inside a circular tube

Calculate the convection heat transfer coefficient for water flowing with a mean veloc-
ity of 2 m s−1 inside a smooth-walled circular pipe of inside diameter 5 cm. The inside
wall of the (thin, conducting) pipe is maintained at a constant temperature of 100 ◦C by
steam condensing on the outside. At a location where the fluid flow is hydrodynamically
and thermally developed, the bulk mean temperature of the water is 60 ◦C. Calculate the
convection heat transfer coefficient and the heat flow per unit length of pipe.

Data: Physical properties of water at 60 ◦C

ρ = 983 kg m3

µb = 4.67× 10−4 kg m−1 s−1

λ = 0.653 W m−1 K−1

Cp = 4185 J kg−1 K−1

and viscosity of water at the wall temperature of 100 ◦C

µw = 2.83× 10−4 kg m−1 s−1

Calculate the Reynolds number:

Re =
ρumD

µ

=
983× 2× 0.05

4.67× 10−4

= 210 493

therefore the flow is well into the turbulent region.

Calculate the Prandtl number:

Pr =
cpµ

λ

=
4185× 4.67× 10−4

0.653
= 2.993
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Then

Nu = 0.027Re0.8Pr0.333

(
µb
µw

)0.14

= 0.027× 210 4930.8 × 2.9930.333 ×
(

4.67

2.83

)0.14

= 0.027× 18 138× 1.441× 1.073

= 757.2

hD

λ
= 757.2

h =
757.2× 0.653

0.05
= 9889 W m−2 K−1

q̇ = h (Tw − Tf )
= 9889× (100− 60)

= 395 597 W m−2

The area per meter of pipe is,

A = πDh

= π × 0.05× 1

= 0.1571 m2 m−1

Q̇ = q̇A

= 395 567× 0.1571

= 62 112 W m−1

The above example demonstrates the use of a convection heat transfer correlation. There
are many such correlations, developed for different geometrical situations e.g. pipes,
ducts, flat plates, and applicable over different ranges of conditions e.g. laminar or tur-
bulent flow, range of Prandtl number. The important thing is to know that, to use a cor-
relation, you must be sure that it is applicable to your particular system, and that you
are operating within its range of applicability. You should also bear in mind that their
accuracy is perhaps only ±25%.

4.5.2 Forced Convection, Laminar Flow over a flat Plate

Local Nusselt number, Nux,

Nux = 0.332Re0.5
x Pr0.333

Average Nusselt number, Num, over a distance L

Num = 0.664Re0.5
L Pr0.333

Range of application: ReL < 5× 105, 0.6 < Pr < 10, constant wall temperature.
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4.5.3 Forced Convection, Turbulent Flow over a Flat Plate

Local Nusselt number, Nux,

Nux = 0.029Re0.8
x Pr0.43

Average Nusselt number, Num, over a distance L

Num = 0.036
(
Re0.8

L − 9200
)

Pr0.43

(
µb
µw

)0.25

Range of application: 2× 105 < ReL < 5.5× 106, 0.7 < Pr < 380, 0.26 < µb/µw < 3.5,
constant wall temperature.

4.5.4 Forced Convection, Fully Developed Laminar Flow in Smooth,
circular Pipes

Nu = 4.364

Range of application: Re < 2300, constant wall heat flux along the pipe.

Nu = 3.66

Range of application: Re < 2300, constant wall temperature along the pipe.

4.5.5 Forced Convection, Entrance Region of a Circular Tube

Num = 3.66 +
0.0668Gz

1 + 0.04Gz0.667

where Gz = Re Pr/ (L/D) = Graetz number and L is distance from inlet.

Range of application: Gz < 100, constant wall temperature

4.5.6 Forced Convection, Fully Developed Turbulent Flow in Smooth,
Circular Pipes

Colburn Equation

Nu = 0.023Re0.8Pr0.333

Range of application: 0.7 < Pr < 160, Re > 10 000, L/D > 60, smooth pipes.

Dittus-Boelter Equation

Nu = 0.023Re0.8Prn

where n = 0.4 for heating and 0.3 for cooling.

Range of application: 0.7 < Pr < 160, Re > 10 000, L/D > 60, smooth pipes.
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Sieder and Tate Equation

Nu = 0.027Re0.8Pr0.333

(
µb
µw

)0.14

Range of application: 0.7 < Pr < 16 700, Re > 10 000, L/D > 60, smooth pipes.

Petukhov Equation

Nu =
Re Pr

1.07 + 12.7
(
Pr0.667 − 1

)(f
8

)0.5

(
f

8

)(
µb
µw

)n

where

n = 0.11 for heating with uniform Tw

= 0.25 for cooling with uniform Tw

= 0.0 for uniform wall heat flux or for gases

and f is the friction factor.

Range of application: 104 < Re < 5× 106, 0.5 < Pr < 200 with 5-6% error, 0.5 < Pr <
2000 with 10% error, 0.025 < µb/µw < 12.5.

For non-circular ducts, the tube diameter in the above correlations can be replaced by the
hydraulic diameter, Dh, of the non-circular duct, defined as

Dh =
4Ac
P

where Ac is the cross sectional area and P is the wetted perimeter.
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4.6 Problems

1. A refrigerated lorry container is being designed. The container of the lorry is 7 m
long, 3 m high and 2 m wide. A worst case scenario is assumed, that the lorry is
travelling at 60 miles per hour on a hot sunny day with the ambient air temperature
at 30 ◦C.

(a) Calculate the rate of convective heat transfer to the top and two sides of the
lorry container, if their surfaces are at 18 ◦C. (Ignore the lorry’s cab, under-
side and back doors.) Use the following correlation to calculate the average
convection heat transfer coeffcient for air flowing over a flat surface of length
L:

h =
λ

L

(
0.0125Re0.8

L − 287
)

Use the following physical properties of air at 30 ◦C: λ = 0.026 W m−1 K−1,
ρ = 1.163 kg m−3, µ = 1.86× 10−5 Pa s.

(b) Solar radiation falls onto the top and one side of the lorry at a flux of 500 W m−2.
Calculate the total cooling duty required to maintain the container’s steady
state internal temperature.

(c) The walls of the container are made of insulation (thermal conductivity of
0.11 W m−1 K−1) sandwiched between two stainless steel sheets, each of 5 mm
thickness and with a thermal conductivity of 19 W m−1 K−1.

(d) If the outer surface of the lorry walls are at 18 ◦C, and the inside wall of the
chamber is to be maintained at 2 ◦C, calculate the thickness of the insulation
required. Assume heat enters the lorry container only through the top and two
sides (ignore the front, back and underside).

2. Energy is generated at a constant rate of 104 W m−3 throughout a slab of thickness
10 cm and constant thermal conductivity 1.2 W m−1 K−1. The boundary surface
on one side is insulated so that there is no heat flow across this boundary, and
on the other dissipates heat by convection into a fluid at temperature 20 ◦C with a
heat transfer coefficient 74 W m−2 K−1. Calculate the steady state temperature at
both surfaces of the slab, and the heat flux from the slab into the fluid. Sketch the
temperature profile and heat flux profile through the slab. (N.B. The heat flux can
be calculated in three ways - from the temperature profile at the slab surface, from
the convection heat transfer equation, and one other way - what is it?)

[T (0) = 75.18 ◦C, T (L) = 33.51 ◦C, Q = 1000 W m−2]

3. A wall of thickness L and constant thermal conductivity λ is irradiated with gamma
rays at the surface x = 0. The gamma rays attenuate as they pass through the wall,
and in so doing convert their energy into heat. This volumetric heat generation
varies through the wall at a rate given by G(x) = G0 exp (−βx) where G0 and
β are constants. The boundary surface at x = 0 is kept thermally insulated, and
the boundary surface at x = L dissipates heat by convection with convection heat
transfer coefficient h into a fluid at temperature Tf . Develop an expression for the
steady state heat flux throughout the wall as a function of distance x, and for the
wall surface temperature at x = L.

[q̇ =
G0

β
(1− exp (−βx)), T (L) = Tf +

G0

hβ
(1− exp (−βL))]



64 CHAPTER 4. HEAT TRANSFER BY CONVECTION

4. For the system described in the question above, calculate the convection heat flux
and the wall surface temperature at x = L, for G0 = 104 W m−3, β = 3 m−1,
L = 0.5 m, λ = 2.5 W m−1 K−1, h = 70 W m−2 K−1, Tf = 15 ◦C.

5. A wire of radius R and constant thermal conductivity λ carrying current generates
heat at a constant rate throughout of gW m−3. The heat is dissipated by convection
into the ambient air at a temperature Tf with a heat transfer coefficient h.

(a) Show that the expression for the steady state temperature profile throughout
the wire is given by

T (r) =
g

4λ
R2

(
1−

( r
R

)2
)

+
gR

2h
+ Tf

(b) Derive an expression for the heat flux profile throughout the wire. Sketch the
temperature profile and heat flux profile.

(c) For the above wire and the following data: g = 6× 106 W m−3, R = 1.5 mm,
Tf = 10 ◦C, λ = 2.5 W m−1 K−1, h = 45 W m−2 K−1; calculate the tempera-
ture at the surface of the wire.
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5.1 Introduction

We started this course by stating that heat transfer is one of the most useful things you
will ever learn, for several reasons, including that many processing situations involve heat
transfer, and that it is an excellent example of transport phenomena. Next year you will do
a course called Momentum, Heat and Mass Transfer, which will aim to bring these three
topics together and show that, mathematically, they have the same form. That course will
then concentrate on the mathematics, so that you become competent at solving problems
for any of the three transport phenomena. But you will cope with that course much better
if you have a good grasp of the physical situations that all this maths describes. That
is why, throughout this course, we have tried to highlight what is happening physically,
recognising that the maths is simply a tool to describe the physical situation quantitatively.
(Show an overhead from Momentum, Heat and Mass Transfer.)

But the other, more immediately practical reason that heat transfer will be so useful to
you is that it applies to many processing situations of practical interest. So for the rest
of this course, we are going to apply the heat transfer principles that you have learned to
typical industrial problems.

One such problem is heat losses from insulated pipes carrying hot fluids. We know that
for steady state heat transfer through a composite slab, we simply add the resistances to
heat transfer, both for conduction through the slab, and for convection at the surface. The
resistance to heat transfer for conduction through a slab is given by R = 1/UA = x/Al,
and for convection is given by R = 1/hA. But with cylinders and spheres, the area
increases with radius, so the expression for the thermal resistance is more complicated,
and had to be derived by solving Laplace’s equation, as we did in Lecture 10. Today we
will apply this to heat loss through composite cylinders, in particular, insulated pipes, and
we will learn why sometimes adding insulation to pipes is counter-productive, as it can
actually increase heat loss.

5.2 Heat Loss through Composite Cylinders

As noted earlier, cylindrical systems are of great interest to process engineers, as pipes are
cylindrical, and much of a process plant is taken up with pipework. Often these pipes are
carrying hot fluids, such as steam, and often they are insulated to minimise heat losses.
It is important that we are able to calculate the amount of insulation required, and that
requires us to be able to calculate the heat loss across composite coaxial cylinders i.e.
several cylindrical layers in series, as shown in Figure 5.1.

The clearest way to approach this is to utilise the thermal resistance concept introduced
earlier, that the resistance to heat flow is determined by summing the individual resis-
tances across each layer, along with the convection heat transfer resistances on the inside
and outside of the pipe. This will only work for steady state conditions, as the thermal
resistance analogy only applies for steady state.

Q̇ =
Ta − Tb
R

=
Ta − Tb

Ra +R1 +R2 +Rb
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Figure 5.1: Radial heat flow through a hollow composite cylinder with layers in perfect
thermal contact.

For convection heat transfer, we know that the resistance to heat transfer is given by

R =
1

hA

Therefore

Ra =
1

ha2πr0H

Rb =
1

hb2πr2H

We have previously derived the temperature profile and heat flux across a cylindrical wall,
and found that the resistance to heat transfer was given by

R =

ln

(
ro
ri

)
2πHλ

Therefore, for each of the two layers in the composite cylinder,

R1 =

ln

(
r1

r0

)
2πHλ1

R2 =

ln

(
r2

r1

)
2πHλ2

We can thus calculate each of the resistances, add them together, and divide the tempera-
ture difference by the sum to get the heat flow rate.

R =
1

UA
=

1

ha2πr0H
+

ln

(
r1

r0

)
2πHλ1

+

ln

(
r2

r1

)
2πHλ2

+
1

hb2πr2H
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In calculations, the overall heat transfer coefficient is usually based on the outer tube
surface, in this case, r2. The overall heat transfer coefficient can be defined as

UoAo =
1

1

ha2πr0H
+

ln

(
r1

r0

)
2πHλ1

+

ln

(
r2

r1

)
2πHλ2

+
1

hb2πr2H

Uo =

[
Ao

(
1

ha2πr0H
+

1

2πHλ1

ln

(
r1

r0

)
+

1

2πHλ2

ln

(
r2

r1

)
+

1

hb2πr2H

)]−1

=

(
2πr2H

ha2πr0H
+

2πr2H

2πHλ1

ln

(
r1

r0

)
+

2πr2H

2πHλ2

ln

(
r2

r1

)
+

2πr2H

hb2πr2H

)−1

=

(
r2

har0

+
r2

λ1

ln

(
r1

r0

)
+
r2

λ2

ln

(
r2

r1

)
+

1

hb

)−1

Or often in terms of the diameters,

Uo =

[
D2

D0

1

ha
+
D2

2λ1

ln

(
D1

D0

)
+
D2

2λ2

ln

(
D2

D1

)
+

1

hb

]−1

5.2.1 Critical Thickness of Insulation, and the Paradox of cylindrical
Insulation

Now, consider what happens when we add a layer of insulation to a cylindrical pipe. The
resistance to heat transfer contributed by the insulation is given by

Rins =

ln

(
r2

r1

)
2πHλins

Clearly as r2 increases (and r1 stays constant), the resistance to heat transfer increases,
which is what you would expect.

Consider also the resistance to convection heat transfer at the surface, given by

Rb =
1

hb2πr2H

Here, as r2 increases, the resistance to heat transfer actually decreases, as the area for heat
transfer increases.

So as we add insulation to a pipe, the resistance to conduction heat transfer through the
insulation increases, but the resistance to convection heat transfer at the surface decreases.
At some point, there will be a minimum resistance, which would correspond to a maxi-
mum heat loss. So the paradox of cylindrical insulation is that, it is possible, by adding
insulation to a pipe, to actually increase the heat loss!

It is important, therefore, to know at what thickness of insulation you are actually increas-
ing heat loss, so that you can be sure that you put on a greater thickness than this. But in
some situations, we can actually use this to our advantage, for example when we want to
maximise heat loss to avoid overheating. So electric wires and power cables often have a
coating of just the right thickness to maximise cooling.
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The radius at which heat loss is a maximum (resistance to heat transfer is at a minimum)
is called the critical radius of insulation, and is found by finding the radius at which the
differential of the resistance to heat transfer with respect to radius is equal to zero. Con-
sider the heat transfer just through the insulation and into the ambient fluid at temperature
Tb. The resistance to heat transfer is given by

Rtot = Rins +Rb

=

ln

(
r2

r1

)
2πHλins

+
1

hb2πr2H

=

ln

(
r2

r1

)
+
λins

hbr2

2πHλins

The heat transfer rate clearly varies as we increase the thickness of insulation, i.e. as we
increase r2. To find when it reaches a maximum, we differentiate the above equation and
set it to zero:

dRtot

d r2

=
1

2πHλins

(
1

r2

− λins

hbr2
2

)
= 0

The above expression will only equal zero when the term in the right hand bracket equals
zero. So heat loss is as a maximum when

1

r2

− λins

hbr2
2

= 0

i.e. when

1

r2

=
λins

hbr2
2

r2 =
λins

hb

Or, writing the equation more generally

rc =
λins

ho

where rc is the critical radius of insulation and ho is the outside heat transfer coeffi-
cient.

So if the radius of insulation on a pipe is equal to the critical radius, heat loss will be
maximised. Above the critical radius, adding more insulation reduces the heat loss. Below
the critical radius, adding more insulation increases the heat loss. This applies particularly
to small pipes; hence small pipes are often left uninsulated. It also applies to cables and
wires, but here we use it to advantage to maximise heat loss (as cooler cables offer less
electrical resistance).

Also, if insulation becomes wet, this tends to increase its thermal conductivity. As λins

increases, so does rc – in other words, the critical radius increases. It may be possible
that insulation which is initially thicker than the critical radius becomes equal to the crit-
ical radius when wet - which would mean that wet insulation was worse than having no
insulation at all. Again, the tutorial problems give an example of this.
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The critical radius of insulation of a sphere is given by

rc =
2λins

ho

You should be able to derive this, following the same logic as used for the cylindrical case.
To do so, you would need to use the surface area of a sphere (= 4πr2) and the thermal
resistance across a spherical shell. You also need to know this for the coursework, so by
way of reminder, the thermal resistance across a hollow sphere is given by:

Rsphere =
1

4πλ

r2 − r1

r2r1

Note that the critical radius is independent of the thickness of the insulation.

5.3 Transient Heating and Cooling of Mixing Vessels and
of Solids of High λ

Another problem that arises frequently in industry is the transient heating or cooling of
objects, for example, how long will it take to heat or cool an object or a batch of liq-
uid?

Consider a mixing vessel containing a mass M of liquid (specific heat capacity = Cp)
at initial temperature T0, being heated by an external heating source at temperature Tf
according to the general heat transfer equation

Q̇ = UA (Tf − T )

How will the temperature of the liquid change with time? How long will it take to achieve
a target temperature?

We answer these questions by assuming the liquid to be well mixed (i.e. temperature is
even throughout) and by considering an energy balance over a time interval ∆ t:(

Energy content
at time t+ ∆ t

)
=

(
Energy content

at time t

)
+

(
Energy input by heat

transfer over time interval ∆ t

)
MCpT (t+ δ t) = MCpT (t) + Q̇∆ t
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Rearranging

Q̇ =
MCp (T (t+ ∆ t)− T (t))

∆ t
= MCp

(T (t+ ∆ t)− T (t))

∆ t

As ∆ t goes to zero, the right hand side becomes the differential of T with respect to time.
Also, substituting in for Q̇ gives

Q̇ = UA (Tf − T ) = MCp
dT

d t

in other words, the rate of heat transfer at any moment is balanced by the rate of change of
temperature. To find an explicit expression for temperature at time t, we need to rearrange
and integrate:

dT

Tf − T
=

UA

MCp
d t∫ T (t)

T0

dT

Tf − T
=

∫ t

0

UA

MCp
d t

[− ln (Tf − T )]T (T )
T0

=
UA

MCp
t

− ln

(
Tf − T (t)

Tf − T0

)
=

UA

MCp
t

Tf − T (t)

Tf − T0

= exp

[
− UA

MCp
t

]
= exp

[
− t
τ

]
where τ = MCp/UA is the time constant for the system.

Note that the left hand side expression is a dimensionless temperature expression which
varies from 1 initially to zero after an infinitely long time. So the temperature of the
vessel contents approaches the heating temperature by exponential decay. The analysis
applies whether we are heating or cooling, provided the heat source maintains a constant
temperature.

The above analysis would apply, for example, to a steam jacketed vessel, in which the
steam temperature stays constant throughout the heating process. Note that we could heat
the vessel contents in other ways, for example, by direct steam injection (which would
alter the mass of the liquid as it heated), or by direct electrical heating (in which case
heat transfer would be at a constant rate and the temperature would increase linearly with
time), or by a heating fluid which is simultaneously cooling so that its temperature is also
changing.

The above analysis also applies to heating (or cooling) of a solid of very high thermal con-
ductivity (so that the temperature throughout can be considered uniform, equivalent to the
assumption above that the liquid is well mixed). This type of analysis is called a lumped
system analysis. We can determine whether a lumped system analysis is appropriate for a
solid, i.e. whether the temperature distribution in the solid is sufficiently uniform for this
sort of analysis, by defining a dimensionless number called the Biot number, Bi, as

Bi =
hLs
λs
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where λs is the thermal conductivity of the solid and Ls is the characteristic length, given
by

Ls =
V

A

i.e. volume divided by surface area for heat transfer. For a sphere, the characteristic length
is

Ls =

4

3
πr3

4πr2
=
r

3
=
D

6

and for a slab heated on both sides it is half the thickness of the slab, L/2.

The lumped system analysis will then be accurate within about 5% if Bi < 0.1.

The physical significance of the Biot number becomes clearer if it is written as

Bi =
h

λs
Ls

where it is clearly the ratio of heat transfer by convection to the solid to heat transfer by
conduction within the solid. So, if heat transfer within the solid is very fast, the tempera-
ture within the solid will be fairly uniform, and the Biot number will be small.

The analysis also applies to a fluid flowing along a pipe, in which case time can be re-
placed by distance down the pipe, resulting in

Tf − T (x)

Tf − T0

= exp

[
− UA

ṀCp
x

]
= exp

[
− x
X

]

where X = ṀCp/UA with units of m, where A is the surface area for heat transfer per
meter of pipe.

5.3.1 Example

An aluminium plate (λ = 160 W m−1 K−1, ρ = 2790 kg m−3, Cp = 880 J kg−1 K−1) of
thickness L = 3 cm and at a uniform intial temperature of 225 ◦C is suddenly immersed
into a well-stirred fluid maintained at a constant temperature of 25 ◦C. The heat transfer
coefficient between the plate and the fluid is 320 W m−2 K−1. Determine the time required
for the centre of the plate to cool to 50 ◦C.

A lumped system analysis is appropriate if Bi < 0.1. The characteristic dimension is
given by

Ls =
Volume

Area
=
LA

2A
=
L

2
= 1.5 cm

Therefore

Bi =
hLs
λs

=
320× 1.5× 10−2

160
= 3× 10−2
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which is less than 0.1, so the lumped system analysis is applicable. The temperature at
time t is therefore given by

Tf − T (t)

Tf − To
= exp

(
− t
τ

)

where

τ =
ρV Cp
UA

=
ρCpLs
h

=
2790× 880× 1.5× 10−2

320
= 115.1 s

Then, putting the temperatures in:

25− 50

25− 225
= exp (−t/115.1)

0.125 = exp (−t/115.1)

−2.079 = − t

115.1
t = 239.3 s
≈ 4 minutes
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5.4 Problems

1. The contents of a jacketed fermentation vessel with a capacity of 30 m3 of liquid
are to be heated using steam condensing in the jacket at 121 ◦C. The heat trans-
fer area of the jacketed vessel is 25 m2, and the overall heat transfer coefficient is
1500 W m−2 K−1. The density of the fermentation broth is 1020 kg m−3, its specific
heat capacity is 3880 J kg−1 K−1, and the broth is well mixed. The initial tempera-
ture of the broth is 15 ◦C. Ignoring the thermal resistance and heat capacity of the
vessel walls, calculate the time (in minutes) required to raise the temperature of the
broth to 100 ◦C.

[85 minutes]

2. After allowing for the heat generated by respiration, a fermenter loses heat at a rate
of 8 kW, which must be replaced to maintain the temperature in the fermenter at
37 ◦C. This heat duty is to be supplied by a thin helical copper coil of internal diam-
eter 1.5 cm passing through the fermenter, carrying hot water at 90 ◦C. The average
velocity of water in the tube is 1.8 m s−1. Calculate the heat transfer coefficient in
the tube using the Seider and Tate correlation

Nu = 0.027Re0.8Pr0.333

(
µb
µw

)0.14

If the heat transfer coefficient on the outside of the tube is 1500 W m−2 K−1, cal-
culate the overall heat transfer coefficient, heat flow rate per unit length of pipe,
and the length of pipe required to achieve the required heat transfer duty. Ignore
the thickness and thermal resistance of the copper pipe, and assume the pipe wall
temperature to be 70 ◦C.

Thermophysical properties of water at 90 ◦C,

λ = 0.676 W m−1 K−1

ρ = 965 kg m−3

µ = 316× 10−6 Pa s
Cp = 4207 J kg−2 K−1

and viscosity of water at 70 ◦C = 405× 10−6 Pa s

[12 622 W m−2 K−1, 1341 W m−2 K−1, 3349 W, 2.39 m]

3. (a) Explain why the steady state rate of heat transfer through several layers in se-
ries is the same through each layer, even if their thermal conductivities differ,
and how this is achieved.

(b) A cylindrical fermenter is to be maintained at 37 ◦C. The fermenter is 4 m
tall and 1.5 m in diameter, and is made of 5 mm thick stainless steel (λ =
19 W m−1 K−1).

Calculate the steady state rate of heat loss to the surrounding air at 10 ◦C, if
the liquid side heat transfer coefficient is 150 W m−2 K−1 and the air side heat
transfer coefficient is 10 W m−2 K−1. Assume the fermenter is full of liquid,
and that heat loss occurs through the sides, top and bottom.
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(c) Estimate the reduction in heat loss that would occur if the fermenter were
completely insulated with a 1 cm thick layer of glass wool insulation (λ =
0.038 W m−1 K−1). Ignore the curvature of the fermenter.

[5.65 kW, 1.63 kW]

4. A 0.008 m3 laboratory fermenter is to be maintained at 37 ◦C. The organisms gen-
erate heat in the broth at a rate of 104 W m−3. The fermenter is cylindrical, made
of stainless steel, with a surface area for heat transfer of 0.24 m2. The fermenter
loses heat into ambient air at 10 ◦C, with a convection heat transfer coefficient of
20 W m−2 K−1.

(a) Calculate the rate of heat transfer from the fermenter. Ignore the thermal re-
sistance of the liquid-side heat transfer and of the stainless steel walls.

(b) Considering the heat generated by the organisms, show that the rate at which
heat must be supplied to maintain the temperature of the fermenter is about
50 W.

The above fermentation is scaled up to a 100 m3 fermenter with a surface area for
heat transfer of 55 m2.

(c) Assuming the same ambient air temperature, convection heat transfer coeffi-
cient and rate of heat generation as above, show that the rate at which heat
must be removed from the large scale fermenter, to maintain the temperature
at 37 ◦C, is 970 kW.

(d) The heat is removed from the fermenter using a thin coiled copper tube through
which chilled water at 4 ◦C is pumped. The internal diameter of the tube
is 2 cm, and the average velocity of water in the tube is 2 m s−1. Using the
following correlation, calculate the convection heat transfer coefficient of the
water flowing through the coil. Assume the water temperature at the tube wall
is 37 ◦C.

Nu = 0.027Re0.8Pr0.333

(
µb
µw

)0.14

(e) If the heat transfer coefficient on the outside of the tube is 1800 W m−2 K−1,
calculate the overall heat transfer coefficient, ignoring the thermal resistance
of the tube wall.

(f) Calculate the length of copper tube required to achieve the necessary heat
transfer duty, if the area per metre of pipe is 0.0628 m2.

(g) Why must heat be removed from the larger fermenter, but supplied to the
smaller one?

Thermophysical properties of water at 4 ◦C

λ = 0.576 W m−1 K−1

ρ = 1000 kg m−3

µ = 1561× 10−6 Pa s
Cp = 4210 J kg−2 K−1

and viscosity of water at 37 ◦C = 687× 10−6 Pa s

[129.6 W, 9.703× 105 W, 6594 W m−2 K−1, 1414 W m−2 K−1, 332 m]
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