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TOPIC T3: DIMENSIONAL ANALYSIS AUTUMN 2023 
 

 

Objectives 
 

(1) Be able to determine the dimensions of physical quantities in terms of fundamental 

dimensions. 

(2) Understand the Principle of Dimensional Homogeneity and its use in checking equations 

and reducing physical problems. 

(3) Be able to carry out a formal dimensional analysis using Buckingham’s Pi Theorem. 

(4) Understand the requirements of physical modelling and its limitations. 

 

 

1. What is dimensional analysis? 

 

2. Dimensions 

 2.1 Dimensions and units 

 2.2 Primary dimensions 

 2.3 Dimensions of derived quantities 

 2.4 Working out dimensions 

 2.5 Alternative choices for primary dimensions 

 

3. Formal procedure for dimensional analysis 

 3.1 Dimensional homogeneity 

 3.2 Buckingham’s Pi theorem 

 3.3 Applications 

 

4. Physical modelling 

 4.1 Method 

 4.2 Incomplete similarity (“scale effects”) 

 4.3 Froude-number scaling 

 

5. Non-dimensional groups in fluid mechanics 
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1. WHAT IS DIMENSIONAL ANALYSIS? 
 

Dimensional analysis is a means of simplifying a physical problem by appealing to 

dimensional homogeneity to reduce the number of relevant variables. 

 

It is particularly useful for: 

• checking equations; 

• presenting and interpreting experimental data; 

• attacking problems not amenable to a direct theoretical solution; 

• establishing the relative importance of particular physical phenomena; 

• physical modelling. 

 

 

Example. 

The drag force, 𝐹, on a sphere is a function of approach-flow speed, 𝑈, sphere diameter, 𝐷, 

fluid density, 𝜌, and viscosity, 𝜇. However, instead of having to draw hundreds of graphs 

portraying its variation with all combinations of these parameters, dimensional analysis will 

tell us that the problem can be reduced to a dimensionless relationship between just two 

independent variables: 

𝑐𝐷 = 𝑓(Re) 

where 𝑐𝐷 is the drag coefficient: 

𝑐𝐷 ≡
𝐹

1
2 𝜌𝑈2𝐴

          (𝐴 =
π𝐷2

4
) 

and Re is the Reynolds number: 

Re ≡
𝜌𝑈𝐷

𝜇
 

 

In this instance dimensional analysis has reduced the number of relevant variables from 5 to 

2 and the experimental data to a single graph of 𝑐𝐷 against Re. 

 

  

FU
D

, 
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2. DIMENSIONS 

 

2.1 Dimensions and Units 
 

A dimension is the type of physical quantity. 

A unit is a means of assigning a numerical value to that quantity.  

SI units are preferred in scientific work. 

 

 

2.2 Primary Dimensions 
 

In fluid mechanics the primary or fundamental dimensions, together with their SI units, are: 

 mass M (kilogram, kg) 

 length L (metre, m) 

 time T (second, s) 

 temperature Θ (kelvin, K) 

 

In other areas of physics additional dimensions may be necessary. The complete set specified 

by the SI system consists of the above plus 

 electric current I (ampere, A) 

 luminous intensity C (candela, cd) 

 amount of substance n (mole, mol) 

 

 

2.3 Dimensions of Derived Quantities 
 

The dimensions of common derived mechanical quantities are given in the following table. 

 

 Quantity Common Symbol(s) Dimensions 

Geometry 

Area 𝐴 L2 

Volume 𝑉 L3 

Second moment of area 𝐼 L4 

Kinematics 

Velocity 𝑈 LT–1 

Acceleration 𝑎 LT–2 

Angle 𝜃 1 (i.e. dimensionless) 

Angular velocity 𝜔 T–1 

Quantity of flow 𝑄 L3T–1 

Mass flow rate 𝑚̇ MT–1 

Dynamics 

Force 𝐹 MLT–2 

Moment, torque 𝑇 ML2T–2 

Energy, work, heat 𝐸, 𝑊 ML2T–2 

Power 𝑃 ML2T–3 

Pressure, stress 𝑝, 𝜏 ML–1T–2 

Fluid properties 

Density 𝜌 ML–3 

Viscosity 𝜇 ML–1T–1 

Kinematic viscosity 𝜈 L2T–1 

Surface tension 𝜎 MT–2 

Thermal conductivity 𝑘 MLT–3Θ–1 
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Specific heat 𝑐𝑝, 𝑐𝑣  L2T–2Θ–1 

Bulk modulus 𝐾 ML–1T–2 

 
 
 
2.4 Working Out Dimensions 
 

In the following, [ ] means “dimensions of”. 

 

Example. 

Use the definition 

𝜏 = 𝜇
d𝑢

d𝑦
 

to determine the dimensions of viscosity. 

 

 

Solution. 

From the definition, 

𝜇 =
𝜏

d𝑢/d𝑦
     =

force/area

velocity/length
 

Hence, 

[𝜇] =
MLT−2/L2

LT−1/L
    = ML−1T−1 

 

 

Alternatively, dimensions may be deduced indirectly from any known formula involving that 

quantity. 

 

Example. 

Since Re ≡ 𝜌𝑈𝐿/𝜇 is known to be dimensionless, the dimensions of 𝜇 must be the same as 

those of 𝜌𝑈𝐿; i.e. 

[𝜇] = [𝜌][𝑈][𝐿]    = (ML−3)(LT−1)(L)    = ML−1T−1 

 

 

 

2.5 Alternative Choices For Primary Dimensions 

 

The choice of primary dimensions is not unique. It is not uncommon – and it may sometimes 

be more convenient – to choose force F as a primary dimension rather than mass, and have a 

{FLT} rather than {MLT} system. 

 

Example. 

Find the dimensions of viscosity 𝜇 in the {FLT} rather than {MLT} systems. 
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Solution. 

From the definition, 

𝜇 =
𝜏

d𝑢/d𝑦
 =

force/area

velocity/length
 

Hence, 

[𝜇] =
F/L2

LT−1/L
    = FL−2T 
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3. FORMAL PROCEDURE FOR DIMENSIONAL ANALYSIS 
 

3.1 Dimensional Homogeneity 
 

The Principle of Dimensional Homogeneity 
 

All additive terms in a physical equation must have the same dimensions. 

 

 

Examples: 

 𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2 all terms have the dimensions of length (𝐿) 

 
𝑝

𝜌𝑔
+

𝑉2

2𝑔
+ 𝑧 = 𝐻 all terms have the dimensions of length (𝐿) 

 

Dimensional homogeneity is a useful tool for checking formulae. For this reason it is useful 

when analysing a physical problem to retain algebraic symbols for as long as possible, only 

substituting numbers right at the end. However, dimensional analysis cannot determine 

numerical factors; e.g. it cannot distinguish between ½𝑎𝑡2 and 𝑎𝑡2 in the first formula above. 

 

Dimensional homogeneity is the basis of the formal dimensional analysis that follows. 

 

 

3.2 Buckingham’s Pi Theorem 
 

Experienced practitioners can do dimensional analysis by inspection. However, the formal tool 

which they are unconsciously using is Buckingham’s Pi Theorem1: 

 

Buckingham’s Pi Theorem  
 

(1) If a problem involves 

  𝑛 relevant variables 

  𝑚 independent dimensions 

 then it can be reduced to a relationship between 

  𝑛– 𝑚 non-dimensional parameters Π1, … , Π𝑛−𝑚. 

 

(2) To construct these non-dimensional Π groups: 

 (i) Choose 𝑚 dimensionally-distinct scaling variables (aka repeating variables). 

 (ii) For each of the 𝑛– 𝑚 remaining variables construct a non-dimensional Π of the form 

  Π = (variable)(scale1)𝑎(scale2)𝑏(scale3)𝑐 ⋯ 

 where 𝑎, 𝑏, 𝑐, ... are chosen so as to make each Π non-dimensional. 

 

Note. In order to ensure dimensional independence in {MLT} systems it is common – but not 

obligatory – to choose the scaling variables as: a purely geometric quantity (e.g. a length), a 

kinematic (time-, but not mass-containing) quantity (e.g. frequency, velocity or acceleration) 

and a dynamic (mass-, or force-containing) quantity (e.g. density). 

 
1 Buckingham, E., 1914. The use of Π comes from its use as the mathematical symbol for a product. 
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3.3 Applications 
 

Example. 

Obtain an expression in non-dimensional form for the pressure gradient in a horizontal pipe 

of circular cross-section. Show how this relates to the expression for frictional head loss. 

 

  

Solution. 

Step 1. Identify the relevant variables. 

  d𝑝/d𝑥, 𝜌, 𝑉, 𝐷, 𝑘𝑠, 𝜇 

 

Step 2. Write down dimensions. 

 
d𝑝

d𝑥
 

[force/area]

length
     =

MLT−2 × L−2

L
     = ML−2T−2 

 𝜌 ML−3 

 𝑉 LT−1 

 𝐷 L 

 𝑘𝑠 L 

 𝜇 ML−1T−1 

 

Step 3. Establish the number of independent dimensions and non-dimensional groups. 

 Number of relevant variables: 𝑛 = 6 

 Number of independent dimensions: 𝑚 = 3    (M, L and T) 

 Number of non-dimensional groups (Πs): 𝑛 − 𝑚 = 3 

 

Step 4. Choose 𝑚 (= 3) dimensionally-independent scaling variables. 

 e.g. geometric (𝐷), kinematic/time-dependent (𝑉), dynamic/mass-dependent (𝜌). 

 

Step 5. Create the Πs by non-dimensionalising the remaining variables: d𝑝/d𝑥, 𝑘𝑠 and 𝜇. 

Π1 =
d𝑝

d𝑥
𝐷𝑎𝑉𝑏𝜌𝑐 

 Considering the dimensions of both sides: 

M0L0T0 = (ML−2T−2)(L)𝑎(LT−1)𝑏(ML−3)𝑐

= M1+𝑐L−2+𝑎+𝑏−3𝑐T−2−𝑏
 

 Equate powers of primary dimensions. Since M only appears in [𝜌] and T only 

appears in [𝑉] it is easiest to deal with these first: 

 M: 0 = 1 + 𝑐  𝑐 = −1 

 T: 0 = −2 − 𝑏  𝑏 = −2 

 L: 0 = −2 + 𝑎 + 𝑏 − 3𝑐  𝑎 = 2 − 𝑏 + 3𝑐     = 1 

 Hence, 

 Π1 =
d𝑝

d𝑥
𝐷1𝑉−2𝜌−1      =

𝐷
d𝑝
d𝑥

𝜌𝑉2
 (OK – ratio of two pressures) 

 

 𝑘𝑠 can be non-dimensionalised by inspection, since it already has the same 

dimensions (L) as one of the scaling variables: 



 

Hydraulics 2 T3-8 David Apsley 

Π2 =
𝑘𝑠

𝐷
 

 

 Finally, 

Π3 = 𝜇𝐷𝑎𝑉𝑏𝜌𝑐 

 Considering the dimensions of both sides: 

M0L0T0 = (ML−1T−1)(L)𝑎(LT−1)𝑏(ML−3)𝑐

= M1+𝑐L−1+𝑎+𝑏−3𝑐T−1−𝑏
 

 Again, as M only appears in [𝜌] and T only appears in [𝑉] then deal with these first: 

 M: 0 = 1 + 𝑐  𝑐 = −1 

 T: 0 = −1 − 𝑏  𝑏 = −1 

 L: 0 = −1 + 𝑎 + 𝑏 − 3𝑐  𝑎 = 1 − 𝑏 + 3𝑐     = −1 

 Hence, 

 Π3 = 𝜇𝐷−1𝑉−1𝜌−1      =
𝜇

𝜌𝑉𝐷
 (OK – reciprocal of Reynolds number) 

 

Step 6. Set out the non-dimensional relationship. 

Π1 = 𝑓(Π2, Π3) 

 or 

 
𝐷

d𝑝
d𝑥

𝜌𝑉2
= 𝑓(

𝑘𝑠

𝐷
,

𝜇

𝜌𝑉𝐷
) (*) 

 

Step 7. Rearrange (if required) for convenience. 

 We may replace any Π by a power of that Π, or by a product with the other Πs, 

provided that we retain the same number of independent dimensionless groups. Here, 

we recognise Π3 as the reciprocal of the Reynolds number, so it is more natural to 

use Π3
′ = (Π3)−1 = Re as the third non-dimensional group. We can also write the 

pressure gradient in terms of head loss: d𝑝/d𝑥 = 𝜌𝑔(ℎ𝑓/𝐿). With these two 

modifications the non-dimensional relationship (*) then becomes 

𝑔ℎ𝑓𝐷

𝐿𝑉2
= 𝑓(

𝑘𝑠

𝐷
, Re) 

 or 

ℎ𝑓 =
𝐿

𝐷
×

𝑉2

𝑔
× 𝑓(

𝑘𝑠

𝐷
, Re) 

 Since numerical factors (here, 1/2) can be absorbed into the non-specified function, 

this can easily be identified with the Darcy-Weisbach equation 

ℎ𝑓 = 𝜆
𝐿

𝐷

𝑉2

2𝑔
 

 where 𝜆 is a function of relative roughness 𝑘𝑠/𝐷 and Reynolds number Re, a function 

given (Topic 2) by the Colebrook-White equation. 
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Example. 

The drag force on a body in a fluid flow is a function of the body size (expressed via a 

characteristic length, 𝐿) and the fluid velocity, 𝑉, density, 𝜌, and viscosity, 𝜇. Perform a 

dimensional analysis to reduce this to a single functional dependence 

 𝑐𝐷 = 𝑓(Re) 

where 𝑐𝐷 is a drag coefficient and Re is the Reynolds number. 

 

What additional non-dimensional groups might appear in practice?  

 

 

 

Notes. 

(1) Dimensional analysis simply says that there is a relationship; it doesn’t say what the 

relationship is. For the specific relationship one must appeal to other theory, simulation, 

or experimental data. 

 

(2) If there is only one Π group … then it can’t be a function of anything else … so it must 

be a constant. 

 

(3) If Π1, Π2, Π3, … are suitable non-dimensional groups then we are liberty to replace some 

or all of them by any powers or products with the other Πs, provided that we retain the 

same number of independent non-dimensional groups; e.g. Π1
−1, Π1/Π3

2 etc.. 

 

(4) It is very common in fluid mechanics to find (often after the rearrangement mentioned 

in (3)) certain combinations which can be recognised as familiar key parameters; e.g.  

Reynolds number (Re = 𝜌𝑈𝐿/𝜇) or Froude number (Fr = 𝑈/√𝑔𝐿). 

 

(5) Often the hardest part of the dimensional analysis is determining which are the relevant 

variables. For example, surface tension is always present in free-surface flows, but can 

be neglected if the Weber number We = 𝜌𝑈2𝐿/𝜎 is large. Similarly, all fluids are 

compressible, but compressibility effects on the flow can be ignored if the Mach 

number (Ma = 𝑈/𝑐) is small; i.e. velocity is much less than the speed of sound. 

 

(6) Although certain primary dimensions (e.g. M, L, T) appear when the variables are listed, 

they may do not do so independently, in this case, there will be fewer independent 

dimensions. 

 

As an example of (6), the following example illustrates a case where M and T always appear 

in the combination MT–2, giving only one independent dimension. 
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Example. 

The tip deflection, 𝛿, of a cantilever beam is a function of tip load, 𝑊, beam length, 𝑙, second 

moment of area, 𝐼, and Young’s modulus, 𝐸. Perform a dimensional analysis of this problem. 

 

 

Step 1. Identify the relevant variables. 

  𝛿, 𝑊, 𝑙, 𝐼, 𝐸. 

 

Step 2. Write down dimensions. 

 𝛿 L 

 𝑊 MLT−2 

 𝑙 L 

 𝐼 L4 

 𝐸 ML−1T−2 

 

Step 3. Establish the number of independent dimensions and non-dimensional groups. 

 Number of relevant variables: 𝑛 = 5 

 Number of independent dimensions: 𝑚 = 2    (L and MT−2 - note) 

 Number of non-dimensional groups (Πs): 𝑛 − 𝑚 = 3 

 

Step 4. Choose 𝑚 (= 2) dimensionally-independent scaling variables. 

 e.g. geometric (𝑙), kinematic/time-dependent (𝐸) 

 

Step 5. Create the Πs by non-dimensionalising the remaining variables: 𝛿, 𝐼 and 𝑊. These 

give (after some algebra, omitted here): 

Π1 =
𝛿

𝑙
 

Π2 =
𝐼

𝑙4
 

Π3 =
𝑊

𝐸𝑙2
 

 

Step 6. Set out the non-dimensional relationship. 

  Π1 = 𝑓(Π2, Π3) 

 or 

𝛿

𝑙
= 𝑓(

𝐼

𝑙4
,

𝑊

𝐸𝑙2
) 

 

Note 1. This is as far as dimensional analysis will get us. Detailed theory shows that, for 

small elastic deflections, 

𝛿 =
1

3

𝑊𝑙3

𝐸𝐼
 

or 

𝛿

𝑙
=

1

3
(

𝑊

𝐸𝑙2
) × (

𝐼

𝑙4
)

−1
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Note 2. Although three primary dimensions (M, L, T) appear here, they only do so in two 

independent groups: (L and MT−2), so that the number of independent dimensions 𝑚 = 2. 

This would have been more obvious in the alternative {FLT} system, where the variables 

have the following dimensions: 

 𝛿 L 

 𝑊 F 

 𝑙 L 

 𝐼 L4 

 𝐸 FL−2 

Here, only F and L appear. 
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4. PHYSICAL MODELLING 
 

4.1 Method 
 

If a dimensional analysis indicates that a problem is described by a functional relationship 

between non-dimensional parameters Π1, Π2, Π3, … then complete similarity requires that these 

parameters be the same at both full (“prototype”) scale and model scale. i.e. 

(Π1)𝑚 = (Π1)𝑝 

(Π2)𝑚 = (Π2)𝑝 

etc. 

 

 

Example. 

A prototype gate valve which will control the flow in a conduit conveying paraffin is to be 

studied in a model. List the significant variables on which the pressure drop across the valve 

would depend. Perform dimensional analysis to obtain the relevant non-dimensional groups. 

 

A 1/5-scale model is built to determine the pressure drop across the valve with water as the 

working fluid. 

 

(a) For a particular opening, when the velocity of paraffin in the prototype is 3.0 m s–1 

what should be the velocity of water in the model for dynamic similarity? 

 

(b) What is the ratio of the quantities of flow in prototype and model? 

 

(c) Find the pressure drop in the prototype if it is 60 kPa in the model. 

 

(The density and viscosity of paraffin are 800 kg m–3 and 0.002 kg m–1 s–1 respectively. Take 

the kinematic viscosity of water as 1.010–6 m2 s–1). 

 

 

Solution. 

The pressure drop Δ𝑝 is expected to depend upon the gate opening ℎ, the overall depth 𝑑, 
the velocity 𝑉, density 𝜌 and viscosity 𝜇. 

 

List the relevant variables: 

 Δ𝑝, ℎ, 𝑑, 𝑉, 𝜌, 𝜇 

 

Write down dimensions: 

 Δ𝑝 ML−1T−2 

 ℎ L 

 𝑑 L 

 𝑉 LT−1 

 𝜌 ML−3 

 𝜇 ML−1T−1 

 

 

Number of relevant variables: 𝑛 = 6 
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Number of independent dimensions: 𝑚 = 3    (M, L and T) 

Number of non-dimensional groups (Πs): 𝑛 − 𝑚 = 3 

Choose 𝑚 (= 3) scaling variables: 

 geometric (𝑑); kinematic/time-dependent (𝑉); dynamic/mass-dependent (𝜌). 

 

Form dimensionless groups by non-dimensionalising the remaining variables: Δ𝑝, ℎ and 𝜇. 

 

For Δ𝑝: 

Π1 = Δ𝑝 𝑑𝑎𝑉𝑏𝜌𝑐 

Considering the dimensions of both sides: 

M0L0T0 = (ML−1T−2)(L)𝑎(LT−1)𝑏(ML−3)𝑐

= M1+𝑐L−1+𝑎+𝑏−3𝑐T−2−𝑏
 

Equate powers of primary dimensions: 

 M: 0 = 1 + 𝑐  𝑐 = −1 

 T: 0 = −2 − 𝑏  𝑏 = −2 

 L: 0 = −1 + 𝑎 + 𝑏 − 3𝑐  𝑎 = 1 − 𝑏 + 3𝑐     = 0 

Hence, 

Π1 = Δ𝑝 𝑉−2𝜌−1      =
Δ𝑝

𝜌𝑉2
 

 

ℎ can be done by inspection, since it has the same dimension as the scale 𝑑: 

Π2 =
ℎ

𝑑
 

 

For 𝜇: 

Π3 = 𝜇 𝑑𝑎𝑉𝑏𝜌𝑐 

Considering the dimensions of both sides: 

M0L0T0 = (ML−1T−1)(L)𝑎(LT−1)𝑏(ML−3)𝑐

= M1+𝑐L−1+𝑎+𝑏−3𝑐T−1−𝑏
 

Equate powers of primary dimensions: 

 M: 0 = 1 + 𝑐  𝑐 = −1 

 T: 0 = −1 − 𝑏  𝑏 = −1 

 L: 0 = −1 + 𝑎 + 𝑏 − 3𝑐  𝑎 = 1 − 𝑏 + 3𝑐     = −1 

Hence, 

Π3 = 𝜇𝑑−1𝑉−1𝜌−1      =
𝜇

𝜌𝑉𝑑
 

Recognition of the Reynolds number suggests that we replace Π3 by 

Π3
′ = (Π3)−1      =

𝜌𝑉𝑑

𝜇
 

 

Hence, dimensional analysis yields 

 Π1 = 𝑓(Π2, Π3
′ ) 
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i.e. 

Δ𝑝

𝜌𝑉2
= 𝑓(

ℎ

𝑑
,
𝜌𝑉𝑑

𝜇
) 

 

(a) Dynamic similarity requires that all non-dimensional groups be the same in model and 

prototype; i.e. 

 Π1 = (
Δ𝑝

𝜌𝑉2
)

𝑝

= (
Δ𝑝

𝜌𝑉2
)

𝑚

  

 Π2 = (
ℎ

𝑑
)

𝑝
= (

ℎ

𝑑
)

𝑚
 (automatic if similar shape; i.e. “geometric similarity”) 

 Π3
′ = (

𝜌𝑉𝑑

𝜇
)

𝑝

= (
𝜌𝑉𝑑

𝜇
)

𝑚

  

 

From the last, we have a velocity ratio 

𝑉𝑝

𝑉𝑚
=

(𝜇/𝜌)𝑝

(𝜇/𝜌)𝑚

𝑑𝑚

𝑑𝑝
     =

0.002/800

1.0 × 10−6
×

1

5
     = 0.5 

Hence, 

𝑉𝑚 =
𝑉𝑝

0.5
     =

3.0

0.5
     = 6.0 m s−1 

 

 

(b) The ratio of the quantities of flow is 

𝑄𝑝

𝑄𝑚
=

(velocity × area)𝑝

(velocity × area)𝑚
     =

𝑉𝑝

𝑉𝑚
(

𝑑𝑝

𝑑𝑚
)

2

     = 0.5 × 52      = 12.5 

 

 

(c) Finally, for the pressure drop, 

Π1 = (
Δ𝑝

𝜌𝑉2
)

𝑝

= (
Δ𝑝

𝜌𝑉2
)

𝑚

     ⇒      
(Δ𝑝)𝑝

(Δ𝑝)𝑚
=

𝜌𝑝

𝜌𝑚
(

𝑉𝑝

𝑉𝑚
)

2

     =
800

1000
× 0. 52      = 0.2 

Hence, 

Δ𝑝𝑝 = 0.2 × Δ𝑝𝑚      = 0.2 × (60 kPa)      = 12.0 kPa 
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4.2 Incomplete Similarity (“Scale Effects”) 
 

For a multi-parameter problem it is often not possible to achieve full similarity. In particular, 

it is rare to be able to achieve full Reynolds-number scaling when other dimensionless 

parameters are also involved. For hydraulic modelling of flows with a free surface the most 

important requirement is Froude-number scaling (Section 4.3) 

 

It is common to distinguish three levels of similarity. 

 

Geometric similarity – the ratio of all corresponding lengths in model and prototype are the 

same (i.e. they have the same shape). 

 

Kinematic similarity – the ratio of all corresponding lengths and times (and hence the ratios of 

all corresponding velocities) in model and prototype are the same. 

 

Dynamic similarity – the ratio of all forces in model and prototype are the same; 

 e.g. Re = (inertial force) / (viscous force) is the same in both. (“Inertial force” 

means “mass × acceleration” – i.e., the sum of all forces.) 

 

Geometric similarity is almost always assumed. However, in some applications – notably river 

modelling – it is necessary to distort vertical scales to prevent undue influence of, for example, 

surface tension or bed roughness. 

 

Achieving full similarity is particularly a problem with the Reynolds number Re = 𝑈𝐿/𝜈. 

• Using the same working fluid would require a velocity ratio inversely proportional to 

the length-scale ratio and hence impractically large velocities in the scale model. 

• A velocity scale fixed by, for example, the Froude number (see Section 4.3) means that 

the only way to maintain the same Reynolds number is to adjust the kinematic viscosity 

(substantially). 

 

In practice, Reynolds-number similarity is unimportant if flows in both model and prototype 

are fully turbulent; then momentum transport by viscous stresses is much less than that by 

turbulent eddies and so the precise value of molecular viscosity 𝜇 is unimportant. In some cases 

this may mean deliberately triggering transition to turbulence in boundary layers (for example 

by the use of tripping wires or roughness strips). 

 

 

Surface effects 

 

Full geometric similarity requires that not only the main dimensions of objects but also the 

surface roughness and, for mobile beds, the sediment size be in proportion. This would put 

impossible requirements on surface finish or grain size. In practice, it is sufficient that the 

surface be aerodynamically rough: 𝑢𝜏𝑘𝑠/𝜈 ≥ 5, where 𝑢𝜏 = √𝜏𝑤/𝜌 is the friction velocity and 

𝑘𝑠 a typical height of surface irregularities. This imposes a minimum velocity in model tests. 

 

  

Other Fluid Phenomena 

 

When scaled down in size, fluid phenomena which were negligible at full scale may become 

important in laboratory models. A common example is surface tension. 



 

Hydraulics 2 T3-16 David Apsley 

4.3 Froude-Number Scaling 
 

The most important parameter to preserve in hydraulic modelling of free-surface flows driven 

by gravity is the Froude number, Fr = 𝑈/√𝑔𝐿. Preserving this parameter between model (𝑚) 

and prototype (𝑝) dictates the scaling of other variables in terms of the length scale ratio. 

 

Velocity 

(Fr)𝑚 = (Fr)𝑝 

 (
𝑈

√𝑔𝐿
)

𝑚

= (
𝑈

√𝑔𝐿
)

𝑝

  
𝑈𝑚

𝑈𝑝
= (

𝐿𝑚

𝐿𝑝
)

1/2

 

i.e. the velocity ratio is the square root of the length-scale ratio. 

 

Quantity of flow 

 𝑄 ~ velocity × area  
𝑄𝑚

𝑄𝑝
= (

𝐿𝑚

𝐿𝑝
)

5/2

 

 

Force 

 𝐹 ~ pressure × area  
𝐹𝑚

𝐹𝑝
= (

𝐿𝑚

𝐿𝑝
)

3

 

This arises since the pressure ratio is equal to the length-scale ratio – this can be seen from 

either hydrostatics (pressure ∝ height) or from the dynamic pressure (proportional to 

(velocity)2 which, from the Froude number, is proportional to length).  

 

Time 

 𝑡 ~ length/velocity  
𝑡𝑚

𝑡𝑝
= (

𝐿𝑚

𝐿𝑝
)

1/2

 

 

Hence the quantity of flow scales as the length-scale ratio to the 5/2 power, whilst the 

time-scale ratio is the square root of the length-scale ratio. For example, at 1:100 geometric 

scale, a full-scale tidal period of 12.4 hours becomes 1.24 hours. 

 

Example. 

The force exerted on a bridge pier in a river is to be tested in a 1:10 scale model using water 

as the working fluid. In the prototype the depth of water is 2.0 m, the velocity of flow is 

1.5 m s–1 and the width of the river is 20 m.  

(a) List the variables affecting the force on the pier and perform dimensional analysis. 

Can you satisfy all the conditions for complete similarity? What is the most important 

parameter to choose for dynamic similarity?  

(b) What are the depth, velocity and quantity of flow in the model? 

(c) If the hydrodynamic force on the model bridge pier is 5 N, what would it be on the 

prototype? 
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5. NON-DIMENSIONAL GROUPS IN FLUID MECHANICS 
 

Dynamic similarity requires that the ratio of all forces be the same. The ratio of different forces 

produces many of the key non-dimensional parameters in fluid mechanics. 

 

(Note that “inertial force” means “mass  acceleration” – i.e. the total force. Each non-

dimensional group then involves the ratio of a particular force to the total force. This reflects 

the fraction of the total that this particular force is responsible for, so you can see whether its 

effect is likely to be small or large.) 

 

 Reynolds number Re =
𝜌𝑈𝐿

𝜇
 =

inertial force

viscous force
 (viscous flows) 

 Froude number Fr =
𝑈

√𝑔𝐿
 = (

inertial force

gravitational force
)

1/2

 (free-surface flows) 

 Weber number We =
𝜌𝑈2𝐿

𝜎
 =

inertial force

surface tension
 (near-surface flows) 

 Rossby number Ro =
𝑈

𝛺𝐿
 =

inertial force

Coriolis force
 (rotating flows) 

 Mach number Ma =
𝑈

𝑐
 = (

inertial force

compressibility force
)

1/2

 (compressible flows) 

 

 

These groups occur regularly when dimensional analysis is applied to fluid-dynamical 

problems. They can be derived by considering forces on a small volume of fluid. They can also 

be derived by non-dimensionalising the differential equations of fluid flow (see White, 2021), 

or the online notes for the 4th-year Computational Hydraulics unit. 

 


