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Abstract—In this letter, we consider a new type of flexible-
antenna system, termed pinching-antenna, where multiple low-
cost pinching antennas, realized by activating small dielectric
particles on a dielectric waveguide, are jointly used to serve
a single-antenna user. Our goal is to maximize the downlink
transmission rate by optimizing the locations of the pinch
antennas. However, these locations affect both the path losses and
the phase shifts of the user’s effective channel gain, making the
problem challenging to solve. To address this challenge and solve
the problem in a low complexity manner, a relaxed optimization
problem is developed that minimizes the impact of path loss while
ensuring that the received signals at the user are constructive.
This approach leads to a two-stage algorithm: in the first stage,
the locations of the pinching antennas are optimized to minimize
the large-scale path loss; in the second stage, the antenna
locations are refined to maximize the received signal strength.
Simulation results show that pinch-antenna systems significantly
outperform conventional fixed-location antenna systems, and the
proposed algorithm achieves nearly the same performance as the
highly complex exhaustive search-based benchmark.

Index Terms—Pinching antenna, flexible-antenna system,
downlink rate maximization, line-of-sight communication.

I. INTRODUCTION

Recently, flexible-antenna systems, such as fluid-antenna
systems and movable-antenna systems, have been studied
for their advantages in reconfiguring wireless channels [1],
[2]. Unlike traditional fixed-antenna systems, flexible-antenna
systems provide the ability to adjust antenna locations at
the transceiver, thus improving channel conditions for the
transceivers [3], [4]. However, in traditional flexible-antenna
systems, antenna movement is limited to the wavelength scale,
resulting in limited influence on large-scale path loss, which
limits their applications in various scenarios. Recently, the
pinching antenna has been proposed as a more promising
flexible antenna system to overcome the bottlenecks in conven-
tional flexible antenna systems [5], [6]. Specifically, by using
a dielectric waveguide as a transmission medium, pinching
antennas can be dynamically activated at any point along
the waveguide by simply adding separate dielectric materials,
thereby enabling highly flexible antenna deployment. In ad-
dition, compared to conventional flexible antennas, the pinch
antenna system is less expensive and easier to install because
the pinching mechanism involves simply adding or removing
dielectric materials, making it well-suited for environments
where system adaptability and cost-effectiveness are critical,
such as industrial Internet of Things (IoT) or urban deploy-
ments.
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Fig. 1: A pinching-antenna system with N pinching antennas.

In this paper, we consider a downlink pinching-antenna
system, where multiple pinching antennas are deployed on a
waveguide to serve a single-antenna user, as shown in Fig.
1. Our goal is to maximize the downlink transmission data
rate by optimizing the locations of the pinching antennas.
However, the associated problem is very challenging to solve
because the pinching antenna locations affect both the path
losses and the phase shifts of the user’s effective channel gain.
To tackle this challenge and solve the formulated problem
in a low-complexity manner, a relaxed optimization problem
that minimizes the impact of path loss while ensuring that the
received signals at the user are constructive is developed. This
approach leads to a two-stage algorithm: in the first stage,
the locations of pinching antennas are optimized to minimize
the large-scale path loss; in the second stage, the antenna
locations are refined to maximize the receive signal strength.
The challenge for the addressed optimization problem can be
reflected by the fact that the problem to be solved in the first
stage is still nonconvex and difficult to handle. Intriguingly, we
theoretically reveal that the objective function of this problem
is unimodal. Leveraging this revealed property, a globally
optimal solution of the antenna locations is obtained in closed-
form. Then, with the obtained locations, a succinct location
refinement scheme is proposed to guarantee the constructive
signal receptions at the user. Simulation results demonstrate
that pinching-antenna systems significantly outperform con-
ventional fixed-location antenna systems and the proposed
algorithm achieves nearly the same performance as the high
complexity exhaustive search-based benchmark.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink communication system, where a base
station (BS) with N antennas serves a single-antenna mobile
user. The user is randomly deployed within a square area of
side length D, as illustrated in Fig. 1.

A. Conventional Antenna System

We first consider the conventional antenna system, where
the N BS antennas are deployed at a fixed location. With-
out loss of generality, we assume that the BS antennas are
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deployed right above the centroid of the square area with
a height d. The location of the n-th antenna is denoted
by ψ̄n = [x̄n, 0, d],∀n ∈ N ≜ {1, ..., N}. The spacing
between two neighboring antennas is set as ∆ to avoid antenna
coupling. According to the spherical wave channel model [7],
the channel vector between the fixed antennas and the user is
given by

hConv =

[
η

1
2 e−j 2π

λ ∥ψm−ψ̄1∥

∥ψm − ψ̄1∥
, ...,

η
1
2 e−j 2π

λ ∥ψm−ψ̄N∥

∥ψm − ψ̄N∥

]⊤
, (1)

where ψm = [xm, ym, 0] represents the location of the mobile
user, η = c

4πfc
is a constant where c denotes the speed of light,

fc is the carrier frequency, and λ is the wavelength in free
space. The achievable data rate in the conventional antenna
system is given by

RConv = log

(
1 +

P∥hConv∥22
σ2
w

)
. (2)

where P is the transmit power, and σ2
w is the power of the

additive white Gaussian noise at the user.

B. Pinching-Antenna Systems

The considered pinching-antenna system is shown in Fig.
1, where N pinching antennas are mounted on a waveguide
to jointly serve the user. The waveguide is aligned parallel to
the x-axis at a height d. The transmit signal is represented by
s, while the phase shift of the signal received from the n-th
pinching antenna is denoted by ϕn,∀n ∈ N , and the locations
of the user and the pinching antennas are denoted by ψm and
ψ̃Pin

n ,∀n ∈ N , respectively. In pinching-antenna systems, the
antennas can be flexibly relocated along the waveguide over
distances significantly larger than the wavelength, allowing
them to be placed in close to the user. The channel vector
between the pinching antennas and the user can be written as

hPin=

[
η

1
2 e−j 2π

λ ∥ψm−ψ̃Pin
1 ∥

∥ψm − ψ̃Pin
1 ∥

, ...,
η

1
2 e−j 2π

λ ∥ψm−ψ̃Pin
N ∥

∥ψm − ψ̃Pin
N ∥

]⊤
, (3)

Unlike in (1), the locations of the pinching antennas are
adjustable, meaning that x̃n can be optimized to enhance the
channel conditions. The received signal at the user is given by

yPin =

√
P

N
(hPin)⊤s+ w. (4)

Here, the transmit power is reduced to P
N , as the total transmit

power is evenly distributed among the N active pinching
antennas. On the other hand, since all N pinching antennas are
deployed along the same waveguide, the signal transmitted by
one antenna is essentially a phase-shifted version of the signal
transmitted by another [8]. Consequently, the signal vector s
can be represented as follows:

s = [e−jθ1 , ..., e−jθN ]⊤s, (5)

where s is the signal passed on the waveguide, and θn =

2π
|ψPin

0 −ψ̃Pin
n |

λg
. Here, ψPin

0 denotes the location of the feed
point of the waveguide, and λg = λ

nneff
denotes the guided

wavelength with nneff signifying the effective refractive index
of a dielectric waveguide [8].

Based on the above model, the received signal at the user
can be written as

yPin =

( N∑
n=1

η
1
2 e−j( 2π

λ ∥ψm−ψ̃Pin
n ∥+θn)

∥ψm − ψ̃Pin
n ∥

)√
P

N
s+ w. (6)

The system model in (6) highlights a special feature of
pinching antennas. Unlike conventional antennas, pinching
antennas allow reconfiguration of both the large scale path
loss |ψm − ψ̃Pin

n | and the phase shifts θn by adjusting their
positions, thus providing additional degrees of freedom. Using
this model, the achievable data rate for the pinching antenna
system can be expressed as

RPin=log

(
1+

∣∣∣∣ N∑
n=1

η
1
2 e−j( 2π

λ ∥ψm−ψ̃Pin
n ∥+θn)

∥ψm − ψ̃Pin
n ∥

∣∣∣∣2 P

Nσ2
w

)
. (7)

The goal of this paper is to maximize the downlink data rate
by optimizing the locations of the pinching antennas. The
associated optimization problem can be formulated as

max
x̃1,...,x̃n

RPin (8a)

s.t. |x̃n − x̃n′ | ≥ ∆,∀n, n′ ∈ N , (8b)

where constraints (8b) guarantee that the antenna spacings
should be no smaller than the minimum guide distance, ∆,
to avoid the antenna coupling.

Without loss of generality, we assume that the pinching
antennas are deployed in a successive order, which means

x̃n − x̃n−1 > 0,∀n ∈ N . (9)

As a result, the nonconvex constraints (8b) can be simplified
as the following linear constraints:

x̃n − x̃n−1 ≥ ∆,∀n ∈ N , (10)

Meanwhile, we note that maximize the downlink data rate is
equivalent to maximize the signal-to-noise ratio. Therefore,
problem (8) can be equivalently recast as follows:

max
x̃1,...,x̃n

∣∣∣∣ N∑
n=1

e−jϕn

∥ψm − ψ̃Pin
n ∥

∣∣∣∣ (11a)

s.t. x̃n − x̃n−1 ≥ ∆,∀n ∈ N , (11b)

ϕn =
2π

λ
∥ψm − ψ̃Pin

n ∥+ θn,∀n ∈ N . (11c)

However, problem (11) is still challenging to solve because the
locations of the pinching antennas affect both the numerators
and denominators of the objective function, and also it is
shown in the exponent of the complex-valued numbers. In the
next section, we will propose an efficient algorithm to handle
this problem.

III. PROPOSED ALGORITHM TO SOLVE PROBLEM (11)

Looking at the objective function of the problem (11), we
can see that the locations of the pinch antennas affect two
key aspects of the channel. One is the large scale path loss,
and the other is the phase shifts due to signal propagation
inside and outside the waveguide. To maximize the objective
function, we need to minimize the impact of the large scale
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path loss associated with the terms, |ψm− ψ̃Pin
n |,∀n ∈ N , on

the denominator. Meanwhile, we also need to constructively
combine the received signals from different pinching antennas
at the user. To achieve this goal, we consider the following
relaxed problem:

max
x̃1,...,x̃n

N∑
n=1

1

∥ψm − ψ̃Pin
n ∥

(12a)

s.t. x̃n − x̃n−1 ≥ ∆,∀n ∈ N , (12b)
ϕn − ϕn−1 = 2kπ, ∀n ∈ N , (12c)

where the objective function is to minimize the effects of large
scale path loss by maximizing the sum of the reciprocals of
the distances, and the constraint (12c) ensures that the received
signals from different pinching antennas can be constructively
combined at the user, where k is an arbitrary integer. Although
problem (12) is not strictly equivalent to problem (11), our
simulation results in section IV show that solving problem (12)
achieves almost the same performance as the optimal solution
of problem (11).

Another important observation is that to satisfy constraints
(12c), one only needs to move the pinch antennas on the
wavelength scale, which is much smaller than the distances
between the pinch antennas and the user. Based on this insight,
we design a low-complexity two-stage algorithm to solve
the (12) problem. Specifically, in the first stage, we aim to
maximize the sum of the reciprocals of the distances from
the pinching antennas to the user under the antenna spacing
constraints. Then, in the second stage, we refine the pinching
antenna locations to satisfy the constraints (12c) by moving
them on the wavelength scale. The details of the algorithm are
described in the next two subsections.

A. Maximize the Summation of Reciprocals of Distances

The problem of maximizing the summation of reciprocals
of distances under the antenna spacing constraints is given by

max
x̃1,...,x̃n

N∑
n=1

[
(x̃n − xm)2 + C

]− 1
2 (13a)

s.t. x̃n − x̃n−1 ≥ ∆,∀n ∈ N , (13b)

where C = y2m + d2 > 0. An interesting property of the
optimal solutions of problem (13) is provided in the following
lemma.

Lemma 1 With the optimal solution of problem (13), the
constraints (13b) hold with equalities, i.e.,

x̃∗n − x̃∗n−1 = ∆,∀n ∈ N , (14)

Proof: See Appendix A. ■
With Lemma 1, problem (13) can be simplified as

max
x̃1

N∑
n=1

[
(x̃1 + (n− 1)∆− xm)2 + C

]− 1
2 . (15)

Therefore, the original problem in (13) which is related to
multiple optimization variables can be reduced to a simplified
with respect to the location of the first pinching antenna only.

However, problem (15) is still nonconvex with respect to x̃1
and hence challenging to solve. Intriguingly, the following
lemma reveals that problem (15) has a special structure, which
paves the way to obtain the globally optimal solution of
problem (15).

Lemma 2 The objective function of problem (15) is unimodal
with respect to x̃1 if C ≥ (N − 1)2∆2, and the optimal x̃1
maximizing the objective function is given by

x̃∗1 = xm − N − 1

2
∆. (16)

Proof: See Appendix B. ■
We note that the condition on C is mild. For instance, when

N = 8, f = 6GHz and ∆ is set to half a wavelength, it only
requires C ≥ 0.0306. Additionally, at higher frequencies, the
value of ∆ decreases, leading to a lower required value of C.
According to Lemma 2, the locations of the pinching antennas
can be obtained in closed-form. In particular, the location of
the n-th pinching antenna is given by

ψ̃Pin
n =

[
xm −

(N − 1

2
+ n− 1

)
∆, 0, d

]
,∀n ∈ N . (17)

B. Refine the Pinching Antenna Locations to Satisfy (12c)

The remaining of the optimization procedure is to refine
the pinching antenna locations to satisfy (12c), such that
signals sent by different pinching antennas are constructively
combined at the user. Here, we use a modified approach based
on the one proposed in [6, Subsection III-A]. The detailed
descriptions are as follows, where the case that N is an odd
number is focused on for illustration purposes.

• According to Lemma 2, the obtained location of the
(N+1

2 )-th pinching antenna is set as [xm, 0, d].
• Next, the location of the (N+1

2 + 1)-th pinching an-
tenna is refined. In particular, we concentrate on the
segment between [xm + ∆, 0, d] and the end of the
waveguide by using the first-obtained location which sat-
isfies mod{ϕN+1

2
− ϕN+1

2 +1, 2π} = 0, where mod{a, b}
signifies the module operation of a by b.

• In a successive manner, the location of the n-th (n >
N+1
2 + 1) pinching antenna can be obtained by focusing

on the segment between [x̃n−1 +∆, 0, d] and the end of
the waveguide by using the previously obtained location
which satisfies mod{ϕn−1 − ϕn, 2π} = 0.

• The locations of the pinching antennas n < N+1
2 can be

found successively by following the same steps as above.
This scheme also applies to the case in which N is an even
number. Specifically, the location of the N

2 -th pinching antenna
is initially fixed based on Lemma 2. Then, the locations of the
remaining pinching antennas can be determined sequentially
as outlined above.

IV. SIMULATION RESULTS

In this section, the performances of the pinching-antenna
systems and the proposed algorithm are evaluated via com-
puter simulations. Without loss of generality, the same choices
of the system parameters as in [6] are used, e.g., the noise
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Fig. 2: Data rates of the pinching-antenna
and the conventional antenna systems versus
transmission powers with D = 5 meters.
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Fig. 3: Data rates of the pinching-antenna and
the conventional antenna systems versus side
lengths with P = 30 dBm.
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Fig. 4: Data rates of the proposed algorithm
and the exhaustive search-based method for
the pinching-antenna system with N = 2.

power is set to −90 dBm, fc = 6 GHz, d = 3 meters, ∆ = λ
2 ,

and nneff = 1.4. While the transmission power P , the side
length (D) of the square area, and the number of pinching
antennas N are specified in each figure.

Fig. 2 is provided to validate the advantages of the pinching-
antenna system compared to the conventional antenna system
with fixed antenna positions by using the ergodic achievable
data rate as the performance metric As depicted in Fig. 2,
pinching-antenna systems provide higher data rates compared
to conventional antenna systems. This performance gain comes
from the fact that the pinching-antenna system ensure that
the pinching antennas can be flexibly deployed to the ideal
locations which reduce the large-scale path loss. Meanwhile,
the achievable data rate increases with the number of antennas
for both the pinching-antenna and conventional antenna sys-
tems, thanks to the additional degrees of freedom provided by
using more antennas. However, it is worthy to point out that
adding extra antennas in conventional antenna systems is not
straightforward, whereas the pinching-antenna system offers
superior flexibility to reconfigure the antenna system.

In Fig. 3, the performance of the pinching-antenna systems
with respect to the size of the user’s deployment region is
evaluated. As can be observed from the figure, the achievable
data rates of both antenna systems decrease with increasing
D, due to larger path losses. It is also observed that the
performance gap between the pinching-antenna systems and
the conventional antenna systems increases with D, which not
only shows the great flexibility of pinching-antenna systems to
compensate path losses, but also demonstrates the robustness
of the pinching-antenna system to the diverse user deployment.

To better evaluate the performance of the proposed algo-
rithm for solving problem (11), the exhaustive search method
is used as a benchmark in Fig. 4. Specifically, the exhaustive
search method solves problem (11) by searching all possible
locations of the pinching antennas on the waveguide with
a step size of λ

50 . Since the complexity of the exhaustive
search method increases quickly with the number of pinching
antennas, we focus on the special case with N = 2 pinching
antennas in Fig. 4. This figure shows that the proposed algo-
rithm achieves almost the same performance as the optimal
solution, confirming the efficacy of the proposed scheme,
which first minimizes the effects of path loss and then refines
the pinching antenna locations to ensure constructive signal

combination at the user.

V. CONCLUSIONS

In this work, we have studied the downlink rate maximiza-
tion problem in a pinching-antenna system, where N pinching
antennas are deployed on a waveguide to serve a single-
antenna user. Since the pinching antenna locations affect both
the path losses and the phase shifts of the user’s effective
channel gain, the problem is quite challenging to solve. To
address this issue, we have proposed to consider a relaxed
problem and solved it with a two-stage algorithm in a low-
complexity manner. Simulation results have demonstrated that
the considered pinching-antenna system significantly outper-
forms conventional fixed-location antenna systems, and the
proposed algorithm achieves nearly the same performance as
the high-complexity exhaustive search-based benchmark.

APPENDIX A
PROOF OF LEMMA 1

Lemma 1 can be proved by using contradictions. Without
loss of generality, we assume that x̃∗n − x̃∗n−1 > ∆.

• If x̃∗n+x̃
∗
n−1 ≤ 2xm, we can move the (n−1)-th antenna

towards the n-th antenna with a length δ1 > 0, such that
x̃∗n − (x̃∗n−1 + δ1) = ∆ and x̃n−1 + δ1 < xm. Mean-
while, we keep the locations of other pinching antennas
unchanged. With the new location x̃n−1+δ1, the (n−1)-
th term of the objective function, (x̃n−1−xm)2+C, de-
creases. Therefore, the objective function value increases.

• If x̃∗n + x̃∗n−1 ≥ 2xm, we can similarly show that by
moving the n-th antenna to location x̃∗n−δ2 with δ2 > 0,
such that (x̃∗n − δ2)− x̃∗n−1 = ∆ and x̃∗n − δ2 > xm, the
objective function value increases.

In summary, if the obtained solutions do not make constraints
(13b) hold with equalities, one can always find another set of
locations such that constraints (13b) hold with equalities and
the objective function value increases. The proof of the lemma
is complete. ■

APPENDIX B
PROOF OF LEMMA 2

To prove Lemma 2, let’s first define

g(x̃1)≜
N∑

n=1

hn(x̃1)=

N∑
n=1

[
(x̃1+(n−1)∆−xm)2+C

]− 1
2 . (18)
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The first-order derivative of g(x̃1) is given by

g′(x̃1)=

N∑
n=1

h′
n(x̃1)=

N∑
n=1

−(x̃1+(n−1)∆−xm)

[(x̃1+(n−1)∆−xm)2 + C]
3
2

. (19)

Next, we prove that g(x̃1) is unimodal with x̃1 in three steps:
1) g′(xm − N−1

2 ∆) = 0: By inserting x̃1 = xm − N−1
2 ∆

into g′(x̃1), we have

g′(xm−N−1

2
∆) =

N∑
n=1

h′
n

(
xm − N−1

2
∆
)

=

N∑
n=1

(
N+1

2
− n

)
∆[(

(n− N+1
2

)∆
)2
+C

] 3
2

. (20)

It is straightforward to show from (20) that h′n
(
xm−N−1

2 ∆
)
=

−h′N−n+1

(
xm− N−1

2 ∆
)
. For the case that N is an even num-

ber, it is clear that g′(xm−N−1
2 ∆) = 0. For the case that N is

an odd number, we have h′N+1
2

(
xm−N−1

2 ∆
)
= 0, and thus we

have g′(xm − N−1
2 ∆) = 0. Summarily, g′(xm − N−1

2 ∆) = 0
always holds.

2) g′(x̃1) > 0 for x̃1 < xm − N−1
2 ∆, if C ≥ (N − 1)2∆2:

For x̃1 < xm − N−1
2 ∆, first introduce a parameter δ3 > 0,

such that x̃1 = xm − N−1
2 ∆ − δ3. The first-order derivative

of g(x̃1) is given by

g′(x̃1) = g′
(
xm − N − 1

2
∆− δ3

)
=

N∑
n=1

h′
n

(
xm − N−1

2
∆− δ3

)
=

N∑
n=1

(
N+1

2
− n

)
∆+ δ3[(

(n− N+1
2

)∆− δ3
)2
+C

] 3
2

. (21)

Without loss of generality, we assume n < N+1
2 , and we have

h′
n

(
xm−N−1

2
∆− δ3

)
=

(
N+1
2

−n
)
∆+δ3[(

(N+1
2

−n)∆+δ3
)2
+C

] 3
2

, (22)

h′
N−n+1

(
xm−N−1

2
∆−δ3

)
=

(
n−N+1

2

)
∆+δ3[(

(N+1
2

−n)∆−δ3
)2
+C

] 3
2

. (23)

To let g′(x̃1) > 0 for x̃1 < xm − N−1
2 ∆, it suffices to show

h′n
(
xm−N−1

2 ∆−δ3
)
+h′N−n+1

(
xm−N−1

2 ∆−δ3
)
> 0,∀n ∈ N .

It is noted that, since N+1
2 −n > 0, we have h′n

(
xm−N−1

2 ∆−
δ3
)
> 0 always hold. Meanwhile, if

(
n−N+1

2

)
∆+δ3 > 0, we

have h′N−n+1

(
xm− N−1

2 ∆ − δ3
)
> 0, and thus g′(x̃1) > 0.

Consequently, we only need to focus on the case that 0 ≤
δ3 ≤

(
N+1
2 −n

)
∆, and the condition is equivalent to showing(

h′n(xm − N−1
2 ∆− δ3)

)2−(
h′N−n+1(xm − N−1

2 ∆− δ3)
)2
>

0,∀n ∈ N . For ease of notation, denote z = (N+1
2 −n)∆ > 0.

Then, we have(
h′
n

(
xm−N−1

2
∆−δ3

))2

−
(
h′
N−n+1

(
xm−N−1

2
∆−δ3

))2

=
(z + δ3)

2[
(z + δ3)2 + C

]3 − (z − δ3)
2[

(z − δ3)2 + C
]3 (24a)

⊜ (z + δ3)
2[(z−δ3)

2+C
]3−(z − δ3)

2[(z + δ3)
2+C

]3 (24b)

= 4zδ3
[
C3 − (z2 − δ23)

2(2z2 + 2δ23 + 3C)
]

(24c)

⊜ C3 − (z2 − δ23)
2(2z2 + 2δ23 + 3C) (24d)

> C3 − (z2 + δ23)
2(2z2 + 2δ23 + 3C) (24e)

= C3 − 3C(z2 + δ23)
2 − 2(z2 + δ23)

3 ≜ f(C) (24f)

where a ⊜ b means a and b have the same sign. By verifying
the first-order derivative, it is not difficult to see that f(C) is
monotonically increasing with C as long as

3C2 − 3(z2 + δ23)
2 > 0 ⇔ C > z2 + δ23 . (25)

Meanwhile, one can also verify that when C = 2(z2 + δ23),
we have

f(C) = C3 − 3C(z2 + δ23)
2 − 2(z2 + δ23)

3

= 8(z2+δ23)
3−6(z2+δ23)

3−2(z2+δ23)
3=0. (26)

Combining (25) and (26), we have that f(C) ≥ 0 if C ≥
2(z2 + δ23). Since 0 ≤ δ3 ≤ z, it suffices to set

C ≥ 4z2 ≥ (N − 1)2∆2. (27)

Since h′n(·) and h′N−n+1(·) are symmetry, the same conclu-
sion can be made to the case n > N+1

2 . Therefore, we have
g′
(
xm − N−1

2 ∆ − δ3
)
> 0 for the case that N is an even

number. While for the case that N is an odd number, we have

h′N+1
2

(
xm − N−1

2
∆− δ3

)
=

δ3(
δ23+C

) 3
2

> 0. (28)

Therefore, g′
(
xm − N−1

2 ∆ − δ3
)
> 0 can be established for

the case that N is an odd number. In summary, if C ≥ (N −
1)2∆2, g′(x̃1) > 0 always hold for x̃1 < xm − N−1

2 ∆. This
indicates that g(x̃1) is monotonically increasing for x̃1 < xm−
N−1
2 ∆.
3) g′(x̃1) < 0 for x̃1 < xm − N−1

2 ∆, if C ≥ (N − 1)2∆2:
Similar to step 2), we can prove that g′(x̃1) is strictly negative
for x̃1>xm−N−1

2 ∆ if C ≥ (N−1)2∆2. This means that g(x̃1)
is a monotonically decreasing function for x̃1>xm−N−1

2 ∆.
Combining the conclusions from the steps 2) and 3), we

conclude that g(x̃1) is a unimodal function with respect to
x̃1 if C ≥ (N − 1)2∆2, and there exists a unique solution
that maximizes the objective function. On the other hand, step
1) shows that g′(xm − N−1

2 ∆) = 0, which indicates that the
optimal solution of problem (15) is x̃∗1 = xm − N−1

2 ∆. The
proof of the lemma is complete. ■
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