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Abstract—In this letter, we consider a cloud radio access
networks (C-RANs) in which base stations (BSs) are uniformly
distributed inside a disk. The outage probability and the ergodic
rate achieved by this C-RANs are analysed, where stochastic
geometry is used to capture the randomness of BS locations.
Compared to existing studies to C-RANs, more accurate analyt-
ical results are developed by applying the Gaussian-Chebyshev
integration, as confirmed by our simulation results.
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I. INTRODUCTION

Cloud radio access networks (C-RANs) have been recog-
nized as a key enabler for 5G networks, and one of the
most promising solutions to address the bandwidth crunch
problem in current cellular systems. For these reasons, the C-
RANs technology has gradually drawn a lot of interests from
mobile operators and the researchers from the communication
community [1]. In C-RANs systems, distributed beamforming
is applied to coordinate the transmissions from multiple BSs,
and the challenge to analyse the performance of this C-RANs
is that BSs are randomly deployed, which means that the
distances between the BSs and the user are also random.
Distributed beamforming can achieve performance similar to
maximal ratio combining (MRC), and the performance of
MRC has been studied in Nakagami-m and Rayleigh fading
wireless channels [2]. However, this paper considers that BSs
are randomly deployed in a disk, and the channel model
contains both Rayleigh fading and distance random variable,
different from [2]. In [3], the outage probability of C-RANs
with randomly deployed BSs has been studied, where closed-
form analytical results have been obtained by using two
assumptions, one based on the high signal-to-noise ratio (SNR)
and the other based on the special case that the path loss
exponent is 2. The technology of joint demodulation and
decoding for the uplink of multi-antenna C-RANs has been
investigated in [4].

This paper considers a C-RANs scenario, in which the BSs
are uniformly distributed in a disc and collaborate with each
other by applying distributed beamforming to serve a user
which is located at the center of the disc. The aim of this
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letter is to characterize the fundamental limits of the C-RANs
by using two key performance metrics, the outage probability
and the ergodic rate. The key step of this paper is to define the
density function of the receive SNR, where the challenge is
due to the fact that the distances between the BSs and the user
are randomly distributed. Different from the existing study in
[3], the analytical results developed in this paper are accurate
with an arbitrary choice of the pass loss factor and at moderate
SNRs. The reason for such accuracy improvement is due to
the use of the Gaussian-Chebyshev integration, which can yield
better accuracy compared to the uniform based approximation
used in [3]. Computer simulations are provided to demonstrate
the accuracy of the developed analytical results.

II. SYSTEM MODEL

Consider a C-RANs system, where one user U is located
at the center of a disk D with the radius D, and M BSs
are located inside the disk. Assume that the M BSs are
uniformly distributed in the disk D. Let dj (j = 1, 2, · · · ,M)
denote the distance between the j-th BS and the user U . It is
assumed that all the BSs and the user U are equipped with a
single antenna. Distributed beamforming has been previously
applied to two-way relaying networks in [5]. In [6], a joint
design of distributed beamforming and cooperative relaying
has been proposed in cognitive radio relay networks, which can
boost the spectrum efficiency and improve secondary user’s
performance. However, most existing works about distributed
beamforming, such as the ones in [5] and [6], consider only
small scale multi-path fading, whereas in this paper we will
take large scale path loss into consideration, by assuming that
low-cost C-RANs BSs are randomly deployed.

To be more accurate, both of small scale Rayleigh fading
and large scale path loss are considered in the channel model.
Thus, the channel gain between the j-th BS and the user U is
modelled as follows:

Xj =
|hj |2
1 + dαj

, (1)

where hj ∼ CN (0, 1) represents Rayleigh fading between the
j-th BS and the user U , and α is the path loss exponent.
Note that we use the bounded path loss model in (1), which
avoids the singularity issue when dj → 0. The distributed
beamforming transmission strategy is as follows: the j-th BS

will transmit the signal
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where P is the BS transmission power, and w is the additive
white Gaussian noise (AWGN), denoted by w ∼ CN (0, σ2).
Therefore the use of distributed beamforming means that the
achievable date rate at the user is log2(1+ρSM ), where ρ = P

σ2

is the transmit SNR, and SM is given by

SM =

M∑

j=1

Xj. (2)

The outage probability achieved by such a C-RANs scheme is

Pout = Pr
(
SM < 2R−1

ρ

)
, where R denotes the targeted data

rate.

A. A straightforward approach for analysis

Since the small scale Rayleigh fading and large scale path
loss are independent, a straightforward approach for analysis
is to find the Laplace transform of Xj , then calculate the
Laplace transform of the SM , and finally find the inverse
Laplace transform of the product. In this way, we can obtain
the probability distribution function (PDF) of the channel gain
SM , from which the outage probability can be obtained easily.

The Laplace transform of SM can be evaluated as

LSM
(s) =

∫ ∞

0

e−stfSM
(t)dt

=
(∫ ∞

0

e−szfXj
(z)dz

)M

(a)
=

(∫ D

0

∫ ∞

0

e−
sx

1+yα f|hj|2(x)dxfdj
(y)dy

)M

(b)
=

(∫ D

0

∫ ∞

0

e−
sx

1+yα e−xdx
2y

D2
dy

)M

=
( 2

D2

∫ D

0

(1 + yα)y

1 + s+ yα
dy

)M

, (3)

where (a) follows from the fact that |hj|2 and dj are indepen-
dent [7], (b) follows from the fact that the location of the j-th
BS is uniformly distributed within the disc D. Therefore the
distance dj has the PDF as follows [8]:

fdj
(x) =

2x

D2
, 0 < x < D.

Let t = D−αyα, LSM
(s) can be rewritten as follows:

LSM
(s) =

( 2Dα

α(1 + s)

∫ 1

0

t
2
α

1 + Dα

1+s
t
dt

+
2

α(1 + s)

∫ 1

0

t
2
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−1

1 + Dα

1+s
t
dt
)M

=
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(
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))M

, (4)

where the last equation is obtained by using the definition of
Gauss hypergeometric function 2F1

(
a, b; c;x

)
in [9, 9.111].

This special function has an integral representation as follows:

2F1

(
a, b; c;x

)
=

Γ(c)

Γ(b)Γ(c−b)

∫ 1

0

tb−1(1−t)c−b−1(1−xt)−adt.

We can use the binomial theorem to expand the result of
LSM

(s) in (4), and then apply the inverse Laplace transform
in LSM

(s) to obtain the PDF of SM . However, it is difficult to
obtain fSM

(z), since LSM
(s) contains Gauss hypergeometric

functions. Therefore, an exact analytical expression of fSM
(z)

based on the above LSM
(s) expression is hard to obtain and

reveals little insight into the key quantities. Instead we will
take an approach based on the Gauss-Chebyshev integration
[10] as shown in the following sections.

B. A Gaussian-Chebyshev based approximation

Note that an approximation of the outage probability of the
distributed beamforming scheme using all BSs in this system
model has been developed in [3]. However, this obtained
optimization is only accurate at high SNR and when the path
loss exponent is 2, i.e. α = 2, since the uniform distribution is
used to approximate the PDF of channel gain Xj . Therefore an
important question to be answered in this paper is what is the
outage performance with an arbitrary choice of the path loss
exponent and at not so high SNR. In the following Theorem,
a general expression for the outage probability achieved by
C-RANs at moderate SNR and with an arbitrary path loss
exponent is obtained.

Theorem 1: The outage probability achieved by distributed
beamforming C-RANs transmissions can be approximated as
follows:

Pout ≈
( π

nD

)M
∑

t1+t2+···+tn=M

M !

t1!t2! · · · tn!

×
n∑

i=1

ti∑

k=1

(1 + xα
i )

−kβk

(k − 1)!
γ(k, (1 + xα

i )ε), (5)

where ε = 2R−1
ρ

, γ(a, b) =
∫ b

0
ta−1e−tdt is a lower incom-

plete Gamma function, xi =
D
2 (1 + cos 2i−1

2n π), βk is defined
in (15), and n is a approximation parameter due to the use of
the Gaussian-Chebyshev integration.

Proof: See Section III.

The parameter n is the key to achieve a trade-off between
the approximation accuracy and computation complexity. For
example, by letting n → ∞, the result in Theorem 1 can be
viewed as an exact expression of the outage probability, but
with a lot of computation complexity. From (5), by using the

definition of the diversity gain d = − lim
SNR→∞

log Pout

log SNR , it is

straightforward to demonstrate that the diversity gain achieved
by the number of BSs M is M .

In addition to the outage probability, the ergodic transmis-
sion rate is another important metric for performance evalu-
ation in communication systems. The approximated ergodic
rate achieved in the addressed C-RANs system is given by the
following Theorem.
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Theorem 2: The approximated ergodic rate achieved by C-
RANs with distributed beamforming is given by

Rave ≈ ρ
(

π
nD

)M

ln 2

∑

t1+t2+···+tn=M

M !

t1!t2! · · · tn!

×
n∑

i=1

ti∑

k=1

βk

(1+xα
i )

k

k−1∑

l=0

(1 + xα
i )

le
1+xα

i
ρ

l!ρl+1−m

×
l∑

m=0

(−1)l−m
Γ(m,

1+xα
i

ρ
)

(1 + xα
i )

m
, (6)

where Γ(a, b) =
∫∞
b

ta−1e−tdt is the upper incomplete

Gamma function, xi =
D
2 (1 + cos 2i−1

2n π), and βk is defined
in (15).

Proof: See Section IV.
It is worthy to point out that the results of the average rate

in (6) still contain some upper incomplete functions; however,
such obtained analytical results are much easier to use for
performance evaluation compared to Monte Carlo simulations.

III. PROOF OF THE OUTAGE PERFORMANCE OF THE

C-RANS SCHEME

In this section, the proof of the outage probability approx-
imation shown in Theorem 1 is described. Particularly, the
proof follows from three steps. Firstly, we use the Gauss-
Chebyshev integration to approximate the PDF of the channel
gain Xj . Secondly, applying the approximated PDF to find

the Laplace transform of SM =
∑M

j=1 Xj . Finally, finding the
inverse Laplace transform of the product.

Recall that the closed-form expression of the cumulative
distribution function (CDF) of Xj has been obtained in [11]

FXj
(x) = 1− 2e−x

αD2x
2
α

γ(
2

α
,Dαx). (7)

This expression is quite difficult to use for the calculation
of the outage probability since it contains lower incomplete
functions, exponential functions, and polynomial functions.
Fortunately, we can use the Gauss-Chebyshev integration to
approximate the above expression, and the resultant expres-
sion contains only exponential functions, as described in the
following.

Based on the exact distribution of |hj |2 and dj , the CDF of
Xj can be evaluated as

FXj
(z) = Pr{ |hj |2

1 + dαj
< z}

=

∫ D

0

(
1− e−z(1+xα)

) 2x

D2
dx

= 1− 2

D2

∫ D

0

xe−z(1+xα)dx. (8)

The Gauss-Chebyshev integration [10] will be used to approx-
imate the above integral as follow:
∫ D

0

xe−z(1+xα)dx ≈ πD

2n

n∑

i=1

∣
∣ sin

2i− 1

2n
π
∣
∣xie

−z(1+xα
i ), (9)

where xi =
D
2 (1 + cos 2i−1

2n π), and n is the number of terms
included in the summation.

Thus, the CDF of Xj can be approximated as follows:

FXj
(z) ≈ 1− π

nD

n∑

i=1

∣
∣ sin

2i− 1

2n
π
∣
∣xie

−z(1+xα
i ). (10)

Note that the above expression FXj
(z) contains the summation

of some simple exponential functions, which is much easier to
be used than the exact expression in (7).

As a consequence, the PDF of Xj is obtained by applying
derivative as follow:

fXj
(z) ≈ π

nD

n∑

i=1

∣
∣ sin

2i− 1

2n
π
∣
∣xi(1 + xα

i )e
−z(1+xα

i ). (11)

Applying the approximate result in (11), the approximate
Laplace transform of Xj can be evaluated as follows:

LXj
(s) =

∫ ∞

0

e−szfXj
(z)dz

≈ π

nD

n∑

i=1

∣
∣ sin

2i− 1

2n
π
∣
∣xi(1 + xα

i )

×
∫ ∞

0

e−sze−z(1+xα
i )dz

=
π

nD

n∑

i=1

∣
∣ sin

2i− 1

2n
π
∣
∣
xi(1 + xα

i )

1 + xα
i + s

. (12)

Since the channel gain Xj (1 ≤ j ≤ M) are indepen-
dent and identically (i.i.d.), the Laplace transform of SM =
∑M

j=1 Xj is given by the power M of the Laplace transforms
of individual terms Xj

LSM
(s) ≈

( π

nD

n∑

i=1

∣
∣ sin

2i− 1

2n
π
∣
∣
xi(1 + xα

i )

1 + xα
i + s

)M

=
( π

nD

)M
∑

t1+t2+···+tn=M

M !

t1!t2! · · · tn!

×
n∏

i=1

(∣
∣ sin

2i− 1

2n
π
∣
∣
xi(1 + xα

i )

1 + xα
i + s

)ti

︸ ︷︷ ︸

Q(i,n)

, (13)

where the summation is taken over all sequences of non-
negative integer indices t1 through tn such that the sum of
all ti is M .

Using partial fractions, Q(i, n) in (13) is given by

Q(i, n) =

n∑

i=1

ti∑

k=1

βk

(
1 + xα

i + s
)−k

, (14)

where

βk =
1

(ti − k)!

[
d(ti−k)

ds(ti−k)

{
(1 + xα

i + s)ti

×
n∏

i=1

(∣
∣ sin

2i− 1

2n
π
∣
∣
xi(1+xα

i )

1+xα
i +s

)ti

}
]

s=−1−xα
i

.(15)
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Substituting (14) and (15) into (13), LSM
(s) can be expressed

as follows:

LSM
(s) ≈

( π

nD

)M
∑

t1+t2+···+tn=M

M !

t1!t2! · · · tn!

×
n∑

i=1

ti∑

k=1

βk

(
1 + xα

i + s
)−k

. (16)

Using the inverse Laplace transform of LSM
(s) in (16), and

also the fact that

L−1
(
1 + xα

i + s
)−k

=
tk−1e−(1+xα

i )t

(k − 1)!
,

the PDF of SM is given by

fSM
(z) ≈

( π

nD

)M
∑

t1+t2+···+tn=M

M !

t1!t2! · · · tn!

×
n∑

i=1

ti∑

k=1

βk

(k − 1)!
zk−1e−(1+xα

i )z. (17)

Then, the CDF of SM is given as

FSM
(z) ≈

( π

nD

)M
∑

t1+t2+···+tn=M

M !

t1!t2! · · · tn!

×
n∑

i=1

ti∑

k=1

(1 + xα
i )

−kβk

γ
(
k,
(
1 + xα

i )z
)

(k − 1)!
. (18)

An outage event occurs when the instantaneous rate log2(1 +
ρSM ) is less than a targeted data rate R. Thus, substituting

ε = 2R−1
ρ

into (18), the proof is completed.

IV. PROOF OF THE ERGODIC RATE OF THE C-RANS

SCHEME

In this section, we prove the analytical results about the
ergodic rate shown in Theorem 2.

The proof follows from two steps. Firstly, conditioned on
the lower gamma function expanding result, we obtain a new
approximated expression of the CDF of SM . Secondly, using
the definition of average rate yields the final result.

The CDF of SM obtained in the previous section is not
able to use for calculating the ergodic rate directly due to the
following reason. The CDF shown in (18) contains a term of

1
1+xα , and an integration of

∫∞
0

1
1+xα log2(1 + x)dx does not

exist. As a result, the CDF needs to be rewritten as follows.
Since k is a positive integer, the lower gamma function

γ(k,(1+xα
i )z)

(k−1)! in (18) can be rewritten as

γ
(
k, (1 + xα

i )z
)

(k − 1)!
= 1−

k−1∑

l=0

(1 + xα
i )

l

l!
zle−(1+xα

i )z. (19)

Thus, FSM
(z) in (18) can be expressed as

FSM
(z) ≈

( π

nD

)M
∑

t1+t2+···+tn=M

M !

t1!t2! · · · tn!

×
n∑

i=1

ti∑

k=1

βk

(1+xα
i )

k

(
1−

k−1∑

l=0

(1+xα
i )

lzle−(1+xα
i )z

l!

)
. (20)

Since limz→∞ FSM
(z) = 1, we have

( π

nD

)M
∑

t1+t2+···+tn=M

M !

t1!t2! · · · tn!
n∑

i=1

ti∑

k=1

βk

(1+xα
i )

k
= 1. (21)

Therefore, FSM
(z) can be further expressed as

FSM
(z) ≈ 1−

( π

nD

)M
∑

t1+t2+···+tn=M

M !

t1!t2! · · · tn!

×
n∑

i=1

ti∑

k=1

βk

(1+xα
i )

k

k−1∑

l=0

(1 + xα
i )

lzle−(1+xα
i )z

l!
. (22)

In the above expression, the term of 1
1+xα has been removed,

which facilitates the following calculations about the ergodic
rate. Based on the above approximate result of FSM

(z), the
ergodic rate of SM can be evaluated as follows:

Rave =

∫ ∞

0

log2(1 + ρz)fSM
(z)dz

=
ρ

ln 2

∫ ∞

0

1− FSM
(z)

1 + ρz
dz

≈ ρ
(

π
nD

)M

ln 2

∑

t1+t2+···+tn=M

M !

t1!t2! · · · tn!

×
n∑

i=1

ti∑

k=1

βk

(1+xα
i )

k

k−1∑

l=0

(1 + xα
i )

l

l!

×
∫ ∞

0

zle−(1+xα
i )z

1 + ρz
dz

︸ ︷︷ ︸

Q1

. (23)

Let t = ρz + 1, the integral Q1 in (23) can be evaluated as

Q1 =
1

ρl+1

∫ ∞

1

(t− 1)le−(1+xα
i )

t−1

ρ

t
dt

(a)
=

e
1+xα

i
ρ

ρl+1

∫ ∞

1

∑l

m=0 t
m(−1)l−me−

1+xα
i

ρ
t

t
dt

=
e

1+xα
i

ρ

ρl+1

l∑

m=0

(−1)l−m

∫ ∞

1

tm−1e−
1+xα

i
ρ

tdt

=
e

1+xα
i

ρ

ρl+1−m

l∑

m=0

(−1)l−m
Γ(m,

1+xα
i

ρ
)

(1 + xα
i )

m
, (24)

where (a) follows from the fact that l is a positive pos-
itive integer and using the binomial theorem. Γ(a, b) =∫∞
b

ta−1e−tdt is an upper incomplete function. Note that

Γ(0, b) =
∫∞
b

e−t

t
dt = E1(b) is the exponential integral.

Substituting (24) into (23), the proof is completed.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we present the simulation results to validate
the analytical results obtained in this paper. We assume the
following set of parameters: the targeted data rate is R =
1 bit/s/Hz in Figs. 1-2, Figs. 4-5, while R = 3 bits/s/Hz in
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Fig. 1. Approximation of the CDF of Xj vs Monte Carlo simulations.
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Fig. 2. The impact of the approximated parameter n on the accuracy
of outage probability. BSs number M = 4 and the path loss exponent
is α = 3.
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Fig. 3. Comparison of the uniform distribution based approximation
in [3] and Gauss-Chebyshev integration based approximation. The
path loss exponent is α = 2.
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Fig. 4. Comparison of the analytical and Monte Carlo simulation
results. The path loss exponent is α = 3.

Fig. 3, the disk radius is D = 10 m, and the number of the
approximation terms is n = 10.

In Fig. 1, we compare the analytical results of FXj
(z)

provided at (10) with the actual CDF of Xj obtained from
Monte Carlo simulations with different choices of the path loss
exponent α. As can be seen from Fig. 1, the approximation for
Xj is quite accurate for the whole range of the variable, which
means the Gauss-Chebyshev integration is a good method to
approximate the integral expression.

Fig. 2 shows the impact of the number of the summation
n for the Gauss-Chebyshev approximation on the outage
performance of the C-RANs. As can be seen from the Fig. 2,
when the approximated parameter n increases, the accuracy
of approximated results is improved, i.e., the gap between
the analytical results and the simulation ones is reduced. In
particular, when n = 7, the approximated result matches quite
well with the Monte Carlo simulation result. Therefore it is
reasonable for us to choose n = 10 in the previous example.

The analytical results about the outage probability are
compared to Monte Carlo simulations in Fig. 3 and Fig.
4 for different choices of the path loss exponent. We also
compare the analytical results obtained in this paper to the ones
obtained in [3] which are based on the uniform distribution
approximation method in Fig. 3. It can be observed from Fig.
3 that the approximation results from [3] are accurate only at
high SNR while the analytical result developed in this paper
is more accuracy even in moderate SNR. Fig. 3 and Fig. 4
also illustrate that the diversity gain achieved by C-RANs is
proportional to the number of BSs in the system, and the
outage probability decrease as the number of BSs increase.
Since a larger number of BSs service the user U which is
located at the center of the disk, a higher chance there is to
successfully detect the signal. In addition, it is worth to point
out that the approximated results match well with the Monte
Carlo simulations in moderate SNR and with different path
loss exponents.

In Fig. 5, we show the approximation of the ergodic rate
and Monte Carlo simulation results achieved by the C-RANs
scheme. Fig. 5 also demonstrates that the approximated results
match quite well with the simulation results with different
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Fig. 5. Comparison of the analytical and Monte Carlo simulation
results. The path loss exponent is α = 3.

number of BSs. Furthermore, the ergodic rate improves when
increasing the BSs number M . This is because a larger number
of BSs in cooperation can boost the receive SNR, which in turn
increases the average rate.

VI. CONCLUSIONS

In this letter, the Gauss-Chebyshev integration method was
used to tightly approximate the outage probability and ergod-
ic rate achieved by C-RANs with randomly deployed BSs.
Compared to the existing work, the analytical results are
more accurate and applicable to any choices of the path loss
exponent. We verified our analytical results by using Monte
Carlo simulations, showing that the analytical results match
quite well in moderate SNR and with different choices of the
path loss exponent.
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