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is a general framework, and several recently proposed 5G multiple access schemes can be viewed as

special cases. This survey provides an overview of the latest NOMA research and innovations as well

as their applications. Thereby, the papers published in this special issue are put into the content of the

existing literature. Future research challenges regarding NOMA in 5G and beyond are also discussed.
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I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has become an important principle for the design of

radio access techniques for the fifth generation (5G) wireless networks [1]–[3]. Although several

5G multiple access techniques have been proposed by academia and industry, including power-

domain NOMA [4]–[6], sparse code multiple access (SCMA) [7], [8], pattern division multiple

access (PDMA) [9], [10], low density spreading (LDS) [11], and lattice partition multiple access

(LPMA) [12], these techniques are based on the same key concept, where more than one user

is served in each orthogonal resource block, e.g., a time slot, a frequency channel, a spreading

code, or an orthogonal spatial degree of freedom.

Unlike NOMA, conventional orthogonal multiple access (OMA) techniques, such as time

division multiple access (TDMA) and orthogonal frequency division multiple access (OFDMA),

serve a single user in each orthogonal resource block. The spectral inefficiency of OMA can be

illustrated with the following simple example. Consider a scenario, where one user with very

poor channel conditions needs to be served for fairness purposes, e.g., this user has high priority

data or has not been served for a long time. In this case, the use of OMA means that it is

inevitable that one of the scarce bandwidth resources is solely occupied by this user, despite its

poor channel conditions. Obviously, this has a negative impact on the spectrum efficiency and

throughput of the overall system. In such a situation, the use of NOMA ensures not only that the

user with poor channel conditions is served but also that users with better channel conditions can

concurrently utilize the same bandwidth resources as the weak user. As a result, if user fairness

has to be guaranteed, the system throughput of NOMA can be significantly larger than that of

OMA [13]. In addition to its spectral efficiency gain, academic and industrial research has also

demonstrated that NOMA can effectively support massive connectivity, which is important for

ensuring that the forthcoming 5G network can support the Internet of Things (IoT) functionalities

[14]–[17].

Although the application of NOMA in cellular networks is relatively new, related concepts

have been studied in information theory for a long time. For example, key components of NOMA,

such as superposition coding, successive interference cancellation (SIC), and the message

passing algorithm (MPA), have already been invented more than two decades ago [18], [19].

Nevertheless, the principle of NOMA, i.e., removing orthogonality, has not been used in the

previous generations of cellular networks. In this content, we note that the philosophy behind
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NOMA is rarther different from that behind code division multiple access (CDMA). In fact,

CDMA is primarily built upon the idea that users are separated by exploiting the differences

among their spreading codes, whereas NOMA encourages multiple users to employ exactly the

same code. As a consequence, for CDMA, the chip rate has to be much higher than the supported

information data rate, e.g., supporting a data rate of 10 Gbps may require a chip rate of a few

hundred Gbps, which is difficult to realize with practical hardware.

Conventionally, NOMA can be integrated in existing and future wireless systems because of

its compatibility with other communication technologies. For example, NOMA has been shown

to be compatible with conventional OMA, such as TDMA and OFDMA [20]. Because of this,

NOMA has also been proposed for inclusion in the 3rd generation partnership project (3GPP)

long-term evolution advanced (LTE-A) standard [21], where NOMA is referred to as multi-

user superposition transmission (MUST). Particularly, without requiring any changes to the LTE

resource blocks (i.e., OFDMA subcarriers), the use of the NOMA principle ensures that two

users are simultaneously served on the same OFDMA subcarrier. Furthermore, NOMA has been

recently included in the forthcoming digital TV standard (ATSC 3.0), where it is referred to as

layered division multiplexing (LDM) [22]. Particularly, the spectral efficiency of TV broadcasting

is improved by using the NOMA principle and superimposing multiple data streams. The above

examples clearly demonstrate the large potential of NOMA, not only for 5G networks, but also

for other upcoming and existing wireless systems.

The goal of this survey is to provide a comprehensive overview of the latest NOMA

research results and innovations, including the papers published in this JSAC special issue. In

particular, the design of single-carrier and multi-carrier NOMA is discussed in Sections II and

III, respectively, where power-domain NOMA, SCMA, LDS, and PDMA are used as examples.

Sections IV and V focus on multiple-input multiple-output (MIMO) NOMA and cooperative

NOMA, respectively. In Section VI, the combination of NOMA with millimeter-wave (mmWave)

communications is studied. Some important implementation issues of NOMA are discussed in

Section VII, and concluding remarks are provided in Section IX.

II. SINGLE-CARRIER NOMA

When the NOMA principle is applied to a single orthogonal resource block, i.e., a single

carrier, a spectrally efficient way to realize multiple access is to utilize the power domain.

This leads to so-called power-domain NOMA which will be discussed first in this section.



4

Subsequently, a variation of power-domain NOMA, which is referred to as cognitive radio

inspired NOMA (CR-NOMA) and can strictly meet the users’ diverse quality of service (QoS)

requirements, is described.

A. Power-domain NOMA

Power-domain NOMA can serve multiple users in the same time slot, OFDMA subcarrier, or

spreading code, and multiple access is realized by allocating different power levels to different

users [5], [6], [23]–[25]. An example for this version of NOMA is MUST, which is a two-user

downlink power-domain NOMA scheme, where a base station (BS) serves simultaneously two

single-antenna users at the same OFDMA subcarrier. Denote the two users’ channels by hi,

i ∈ {1, 2}, and assume |h1| ≤ |h2|. The BS superimposes the users’ messages by assigning

corresponding power coefficients, denoted by αi, i ∈ {1, 2}. As shown in Fig. 1, the key idea of

power-domain NOMA is to allocate more power to the user with poorer channel conditions, i.e.,

α1 ≥ α2 and α2
1 + α2

2 = 1 if |h1| ≤ |h2|. User 1 decodes its own message directly by treating

user 2’s message as noise, which results in an achievable rate of log2

(
1 +

|h1|2α2
1

|h1|2α2
2+ 1

ρ

)
bits/s/Hz,

where ρ denotes the transmit signal-to-noise ratio (SNR). On the other hand, user 2 performs SIC,

i.e., it first decodes user 1’s message and then removes this message from its observation before

decoding its own message. This strategy results in an achievable rate of log2 (1 + ρ|h2|2α2
2) since

SIC is always possible as log2

(
1 +

|h2|2α2
1

|h2|2α2
2+ 1

ρ

)
≥ log2

(
1 +

|h1|2α2
1

|h1|2α2
2+ 1

ρ

)
.

BS
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Fig. 1. An example of a NOMA downlink scheme with two users, denoted by U1 and U2, and one subcarrier.

The spectral efficiency gain of NOMA can be illustrated in on the following examples.

Example 1: Consider a high-SNR scenario, i.e., ρ → ∞. For illustration purpose, assume

ρ|h1|2 → 0, i.e., user 1’s channel experiences a deep fade. The sum rate achieved by NOMA
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can be approximated as follows:

log2

(
1 +

|h1|2α2
1

|h1|2α2
2 + 1

ρ

)
+ log2

(
1 + ρ|h2|2α2

2

)
(1)

≈ log2

(
1 +

α2
1

α2
2

)
+ log2

(
ρ|h2|2α2

2

)
= log2(ρ|h2|2).

On the other hand, the sum rate of OMA can be expressed as follows:

1

2
log2

(
1 + ρ|h1|2

)
+

1

2
log2

(
1 + ρ|h2|2

)
(2)

≈1

2
log2

(
ρ|h2|2

)
.

The performance gain of NOMA over OMA is obvious from (1) and (2).

Example 2: Assume that user 1 is an IoT device requiring only a low data rate, and user 2 is

a user demanding a high data rate. When OFDMA is used, which is a typical example of OMA,

each user is allocated one subcarrier. In this example, the spectral efficiency of OMA is poor since

the IoT device is served with more bandwidth than what it actually needs, while the broadband

user is not assigned enough bandwidth. On the other hand, the use of NOMA encourages

spectrum sharing, i.e., the broadband user can also have access to the subcarrier occupied by the

IoT device. As a result, the use of NOMA efficiently supports massive connectivity and meets

the users’ diverse QoS requirements [26].

One may argue that the use of optimal resource allocation for OMA can overcome the above

described disadvantage. However, as shown in [27], if both NOMA and OMA employ optimal

resource allocation, NOMA still yields significant performance gains. In addition, it is worth

pointing out that adaptive resource allocation for OMA introduces dynamic changes to the

properties of the orthogonal resource blocks, and may require using time slots with very short

durations, which might not be realistic in practice.

B. CR-NOMA

Conventional power-domain NOMA allocates more power to the user with poor channel

conditions, which ensures user fairness; however, conventional power-domain NOMA cannot

strictly guarantee the users’ QoS targets. Cognitive-radio (CR) NOMA is an important variation

of power-domain NOMA, which strictly ensures that some or all of the users’ QoS requirements

are met. The key idea behind CR-NOMA is to treat NOMA as a special case of cognitive ratio,
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where the power allocation policy is designed such that the users’ predefined QoS requirements

are met.

The scheme proposed in [13] is an example for CR-NOMA, where a BS serves two downlink

users by using the NOMA principle. Particularly, the user with the poorer channel conditions

is viewed as the primary user of a cognitive radio network, i.e., this user has a strict data rate

requirement, which needs to be fulfilled. This data rate requirement imposes a constraint on the

power allocation policy as follows:

log2

(
1 +

|h1|2α2
1

|h1|2α2
2 + 1

ρ

)
≥ R1, (3)

where R1 denotes user 1’s target data rate. Considering the above constraint, the cognitive radio

inspired power allocation policy can be expressed as follows:

α2
1 = min

1,

(
|h1|2 + 1

ρ

)
(2R1 − 1)

|h1|22R1

 , (4)

which means that all the power is allocated to user 1 for a large R1.

The rationale behind the above CR-NOMA power allocation policy is that user 1 will be

always served with sufficient power to satisfy its QoS requirements. If there is any power left

afterwards, user 2 will be served by using the remaining power. The benefits of CR-NOMA can

be explained based on Example 2 described in the previous subsection. Particularly, the use of

OMA implies that one subcarrier is solely occupied by the low-rate IoT device. By using CR-

NOMA, not only the IoT device can be served with its targeted QoS requirement, but also one

additional user can be admitted to this subcarrier, which increases the overall system throughput.

The outage and rate performance of CR-NOMA is analyzed in [13] for the case of two

scheduled users, while the energy efficiency of CR-NOMA is studied in [28], where the concept

of CR-NOMA is extended to systems with multi-antenna nodes. We note that it is not necessary

to always treat the user with poor channel conditions as the primary user. In [29], a more general

cognitive radio inspired power allocation policy is proposed for downlink and uplink NOMA

scenarios, in order to meet all users’ QoS requirements in a more flexible manner.

III. MULTI-CARRIER NOMA

Given the technical maturity of OFDMA, this type of OMA will very likely be incorporated

into 5G networks, and therefore how multiple OFDMA subcarriers can be efficiently combined
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with NOMA has received a lot of attention. In this section, first the general principle of multi-

carrier NOMA is introduced, and then several existing forms of multi-carrier NOMA proposed

for 5G networks are described.

A. Multi-carrier NOMA: A special case of hybrid NOMA

Multi-carrier NOMA can be viewed as a variation of hybrid NOMA, where the users in a

network are divided into multiple groups. Particularly, the users in each group are served in

the same orthogonal resource block following the NOMA principle, and different groups are

allocated to different orthogonal resource blocks. The motivation for employing hybrid NOMA

is to reduce the system complexity. For example, assigning all the users in the network to a single

group for the implementation of NOMA in one orthogonal resource block is problematic, since

the user having the best channel conditions will have to decode all the other users’ messages

before decoding its own message, which results in high complexity and high decoding delay.

Hybrid NOMA is an effective approach to strike a balanced tradeoff between system performance

and complexity. Let’s consider multi-carrier NOMA as an example. The users in the cell are

divided into multiple groups which are not necessarily mutually exclusive. The users within

one group are allocated to the same subcarrier, and intra-group interference is mitigated by

using the NOMA principle. Different groups of users are allocated to different subcarriers,

which effectively avoids inter-group interference. As a result, overloading the system, which is

necessary in order to support more users than the number of available subcarriers and is required

to enable massive connectivity, can be still realized by this hybrid NOMA scheme. It is noted

that, with hybrid NOMA, overloading is realized at reduced complexity since the number of

users at each subcarrier is limited. Compared to other forms of hybrid NOMA, multi-carrier

NOMA is particularly attractive, mainly due to the fact that OFDMA is likely to be employed

in the forthcoming 5G network.

A key step to implement hybrid NOMA is to understand the impact of user grouping on

the system performance. User pairing, i.e., assigning two users to a single orthogonal resource

block, is studied in [13]. In particular, this paper demonstrates that grouping those two users

from a set of users, whose channel conditions are most different, yields the highest performance

gain over OMA. It is noted that the use of NOMA has quite different effects on the two users.

For example, the user with stronger channel conditions prefers NOMA, since it is very likely

that this user achieves a higher individual data rate with NOMA compared to OMA. However,
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the NOMA rate of the user with poorer channel conditions can be smaller than the rate with

OMA, where this performance loss can be mitigated by the CR inspired approach discussed in

the previous section. Nevertheless, the sum rate achieved with NOMA is typically much larger

than that with OMA, particularly if two users with quite different channel conditions are paired.

Practical design strategies for multi-carrier NOMA are also important to ensure that the

performance gains predicted by the aforementioned theoretical studies regarding user grouping

are realized in practice. Developing corresponding resource allocation algorithms is challenging

as shown in [30]–[32], since the difficult problems of user grouping, subcarrier allocation, and

power allocation are coupled. Monotonic optimization is applied to solve the resulting non-convex

optimization problem in [30], where an optimal solution for joint subcarrier allocation, user

grouping, and power allocation is obtained. This optimal solution is important since it provides

an algorithmic upper bound for the performance of multi-carrier NOMA. A low-complexity

suboptimal solution based on successive convex optimization is also proposed in [30], and the

corresponding resource allocation algorithm achieves a performance gain close to that of the

optimal one.

B. LDS, SCMA, and PDMA

Since multi-carrier NOMA achieves a favourable tradeoff between system performance and

complexity, various practical forms of multi-carrier NOMA have been proposed for the 5G

standard. Both LDS and SCMA are based on the idea that one user’s information is spread

over multiple subcarriers [7], [8], [11], [33]. However, the number of subcarriers assigned to

each user is smaller than the total number of subcarriers, and this low spreading (sparse) feature

ensures that the number of users utilizing the same subcarrier is not too large, such that the

system complexity remains manageable. This is illustrated in the following example.

Example 3: Consider an SCMA system with 6 users and 4 subcarriers, as shown in Fig. 2.

The key step to implement SCMA is to design the factor graph matrix, which specifies which

user’s encoded messages are allocated to which subcarriers [34]. A typical factor graph matrix

for SCMA with 6 users and 4 subcarriers is the following

F =


1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

 , (5)



9

where [F]i,j = 1 means that the j-th user can use the i-th subcarrier, and [F]i,j = 0 means that

this user cannot use the subcarrier. The sparse feature of SCMA is reflected in the fact that there

are only two non-zero entries in each column of F, i.e., each user employs only two subcarriers.

Since one user can use multiple subcarriers, SCMA employs multi-dimensional coding in order

to ensure that the user’s information is effectively spread over the subcarriers. Because one

user’s messages at different subcarriers are jointly encoded, SCMA requires joint decoding at

the receiver, where the MPA is used to ensure low complexity [35]–[37]. This is an important

feature of SCMA, which distinguishes it from power-domain NOMA, as joint decoding instead

of SIC is employed.

SCMA Codebook 
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Channel 

Coding

Channel 

Coding

Channel 

Coding

Channel 

Coding

SCMA Codebook 
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SCMA Codebook 

Mapping
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Fig. 2. An example of an SCMA system with six users and four subcarriers.

PDMA can be viewed as another type of multi-carrier NOMA, but the low density spreading

(sparse) feature of LDS and SCMA is no longer strictly present, i.e., the number of subcarriers

occupied by one user is not necessarily much smaller than the total number of subcarriers.

Similar to the factor graph matrix for SCMA, the performance of PDMA is largely determined

by the design of the subcarrier allocation matrix, referred to as the PDMA pattern matrix. This

is explained in the following example.

Example 4: Consider a typical example for the implementation of PDMA, as proposed in [9],

[10], where there are five users and three subcarriers. For this particular example, the PDMA

pattern matrix can be chosen as

Q =


1 1 0 0 1

1 1 1 0 0

1 0 1 1 0

 , (6)
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where the entries of this matrix indicate how the subcarriers are allocated to the users, similar

to F in (5). However, different from LDS and SCMA, some users might be able to use all the

subcarriers. For the example in (6), user 1 is able to transmit or receive on all subcarriers.

IV. MIMO-NOMA

The application of MIMO to NOMA is important, since the spatial degrees of freedom enabled

by MIMO are crucial for meeting the performance requirements of 5G networks. This section

presents different approaches for the design of MIMO-NOMA.

A. General principles of MIMO-NOMA

Compared to the design of single-input single-output (SISO) NOMA, the design of MIMO-

NOMA is more challenging, mainly for the following two reasons. Firstly, it is not clear whether

the use of MIMO-NOMA can achieve the optimal system performance, although it is clear that

MIMO-NOMA outperforms MIMO-OMA [38]. Considering downlink NOMA as an example,

for the SISO case it is clear that the use of NOMA can realize a part of the capacity region of the

broadcast channel. The probability for NOMA to achieve larger individual and larger sum rates

than OMA is rigorously obtained in [39]. However, the performance evaluation of MIMO-NOMA

is more challenging. For a two-user downlink scenario with single-antenna users and a multiple-

antenna BS, [40] and [41] provide an information theoretic comparison between NOMA, zero

forcing, which can be viewed as a spatial OMA scheme, and dirty paper coding (DPC), which

achieves the capacity region of the broadcast channel with prohibitively high complexity [42].

More importantly, [40] develops the concept of quasi-degradation, which is a useful criterion for

the evaluation of MIMO-NOMA. This quasi-degradation concept is illustrated in Fig. 3, where

the BS has two antennas and there are two single-antenna users. Here, hn denotes the 2 × 1

channel vector of user n which is paired with user m. Three possible realizations of user m’s

channel vector hm are shown in the figure. An extreme example for quasi-degradation is that one

user’s channel vector is a scaled version of the other user’s channel vector, i.e., hn and hm1 as

shown in Fig. 3. An extreme example for non-quasi-degradation is that the users’ channel vectors

are mutually orthogonal, i.e., hn and hm2 as shown in Fig. 3. In general, if user m’s channel

vector falls into the non-shaded area of Ω1 ∪Ω3, the two users’ channels are quasi-degraded. If

the users’ channels are quasi-degraded, it is shown in [40] that the use of MIMO-NOMA can

yield the same performance as DPC, i.e., the use of NOMA achieves the optimal performance in
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the MIMO context. We note that the extension of quasi-degradation to general multi-user MIMO

is still an open problem.

hn

hm1

hm3

hm2

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

0

Ω1

Ω2

Ω3

Fig. 3. An illustration of quasi-degradation when a BS equipped with two antennas communicates with two single-antenna

users.

Secondly, user ordering in MIMO-NOMA scenarios is a difficult task. In the SISO case, the

users’ channels are scalers, so it is straightforward to order the users according to their channel

conditions. However, when nodes are equipped with multiple antennas, the users’ channels are

in form of vectors or matrices, which means that ordering users according to their channel

conditions as in the SISO case becomes difficult. The use of random beamforming for NOMA

was considered in [43], which cleverly avoids the user ordering issue by asking the BS to order

the users according to their channel quality feedback. The use of the large scale path loss for

user ordering has also been proved to be an effective technique [44]–[47]. The scheme proposed

in [45] is a representative example for this approach, where users with larger distances from the

BS are treated as weak users and their messages need to be decoded first at all the receivers. This

user ordering strategy results in a constraint for the system throughput maximization problem.

Similarly, [48] also employs the users’ path loss as indication for their channel conditions.

B. Decomposing MIMO-NOMA to SISO-NOMA

Motivated by the user ordering difficulty, another effective approach to combining MIMO and

NOMA is to exploit spatial degrees of freedom and decompose MIMO-NOMA into multiple

separate SISO-NOMA subchannels, which can significantly reduce the complexity of the system
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design [49], [50]. Take a downlink MIMO-NOMA scenario with 2M users as an example. The

2M users are randomly grouped into M groups, where the two users in group i are denoted

by user i and user i′, respectively. Assume that the BS is equipped with M antennas, while the

users have N antennas. User i observes the following

yi = HiPx + ni, (7)

where Hi denotes the N ×M channel matrix, P is a precoding matrix, x =
[
x1 · · · , xM

]T
,

and each xi is a NOMA mixture containing the two symbols for the two users in the same pair.

In [49], the case where the BS does not know the users’ channel matrices is considered, which

means that a constant precoding matrix has to be used, e.g., the identity matrix can be used,

P = IM . As a result, each user applies zero forcing detection. Denote the detection vector by

vi and vHi pj = 0, for i 6= j, where pj is the j-th column of P. Therefore, the resulting system

model for the user can be written as follows:

vHi yi = vHi hixi + vHi ni, (8)

which corresponds to a SISO-NOMA system model. Then, various SISO-NOMA designs can

be applied in a straightforward manner. Note that N ≥M is required for the scheme proposed

in [49] since the system relies on the receivers to suppress inter-group interference.

When the users’ channel matrices are known at the BS, [51] shows that a better performance

can be obtained. To avoid inter-group interference, each precoding vector needs to satisfy the

following constraint [
vH2 H2 vH2′ H2′ · · · vHM ′HM ′

]
2(M−1)×M

p1 = 0, (9)

where p1 is used as an example. Note that (9) is a set of 2(M − 1) linear equations with M

unknown variables (p1), which means that a solution does not exist. Hence, the concept of signal

alignment has been used in [51], as this facilitates zero forcing precoder design. Particularly, vi

and vi′ are chosen to ensure vHi Hi = vHi′ Hi′ . As a result, (9) can be simplified as follows:[
vH2 H2 · · · vHMHM

]
(M−1)×M

p1 = 0, (10)

for which a solution for pi does exist. With such choices of pi and vi, a SISO-NOMA model

similar to that in (8) is obtained, where the condition N ≥ M required in [51] can be relaxed

to N > M
2

. Note that the concept in [49] and [51] can be extended to massive MIMO scenarios

as shown in [52], by exploiting the spatial correlation among the users’ channel matrices.
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Other types of channel decomposition methods can be also applied to MIMO-NOMA, as

shown in [53] and [54]. For example, in [54], generalized singular-value decomposition (GSVD)

is applied in a NOMA network with two users. In order to simplify the illustration, assume that

all nodes, including the BS and the two users, have M antennas. Using GSVD, the two users’

channel matrices can be decomposed as follows:

H1 = U1Λ1Q, H2 = U2Λ2Q, (11)

where Ui is a unitary matrix, Λi is a diagonal matrix, and Q is an invertable matrix. By using

Q−1 as the precoding matrix, one can simultaneously diagonalize the two users’ channel matrices.

More importantly, the elements on the main diagonal of Λ1 are ascending and the elements on

the main diagonal of Λ2 are descending. Therefore, by using GSVD, effective channel gains of

different strength are paired together on each separated SISO channel, which is ideal for the

application of NOMA.

It is worth pointing out that this approach of using spatial degrees of freedom can lead to a

new form of NOMA, termed Angle Division Multiple Access (ADMA) as shown in [55]. In

addition, note that the use of antenna selection is another effective way to convert MIMO-NOMA

to SISO-NOMA, where the maximum diversity gain can be maintained at the price of a reduced

multiplexing gain [56]–[59]. In general, these decomposition based MIMO-NOMA schemes not

only reduce the complexity of the system design, but are also general and applicable to both

uplink and downlink transmission.

C. When users have similar channel conditions

The difference between the users’ channel conditions plays an important role for the design

of NOMA transmission, which can be illustrated by using SISO-NOMA as an example. If two

users have the same channels, i.e., h1 = h2, the sum rate of NOMA in (1) can be rewritten as

follows:

log2

(
1 +

|h1|2α2
1

|h1|2α2
2 + 1

ρ

)
+ log2

(
1 + ρ|h2|2α2

2

)
= log2

(
1 + |h1|2

)
, (12)

which is exactly identical to the sum rate of OMA. Actually many MIMO-NOMA designs rely

on the assumption that users have different path losses, and they cannot work properly when

users have similar channel conditions. By considering [45] as an example, if the users have the

same path loss, the feasible region of the NOMA rate optimization problem formulated in this

paper may become empty.
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For generalization of the NOMA principle, researchers have proposed new forms of NOMA

transmission. Both [26] and [60] order users not according to their channel gains but according to

their QoS requirements. Consider Example 2 described in Section II as a representative scenario.

Assume that user 1 has a low data rate requirement, such as an IoT device, and user 2 is a

broadband user. The use of OMA results in the situation that the IoT device is given more

bandwidth than it needs, whereas the broadband user does not have enough bandwidth. The use

of NOMA can effectively avoid this problem. Take the scheme proposed in [26] as an example.

To simplify the illustration, we degrade the MIMO-NOMA scheme proposed in [26] into the

simpler case with single-antenna users. The beamforming vector is matched to user 2’s channel,

which means that the two users’ effective channel gains are |h
H
2 h1|2
|h2|2 and |h2|2, respectively. There

are two reasons for such a beamforming design. One is to ensure that user 2’s effective channel

gain is improved since this user needs to be served with a larger data rate, and the other is that

this beamforming effectively enlarges the difference between the two users’ channel conditions,

which is beneficial for the application of NOMA. It is worth pointing out that although user

1’s effective channel may not be strong, effective power allocation policies can also be used to

ensure that this user’s QoS requirements are strictly met.

V. COOPERATIVE NOMA

In this section, the principle of cooperative NOMA is introduced and two types of cooperation

are considered.

A. Cooperation among NOMA users

The first type of cooperative NOMA considers the cooperation among the NOMA users, where

one NOMA user acts as a relay for the other one, as shown in Fig. 4. This type of cooperative

NOMA is motivated by the following reasons:

• There is redundant information in NOMA systems, which can be employed for cooperative

transmission. The two-user downlink case is such an example. The strong user needs to

decode the weak user’s information, before decoding its own signal. This means that the

strong user can act as a regular relay, which assists the weak user.

• There is a need for carrying out cooperative transmission in NOMA systems. Take again

Example 1 described in Section II-A as an example. User 1, i.e., the weak user, has a rate
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of log2

(
1 +

|h1|2α2
1

|h1|2α2
2+ 1

ρ

)
, which is negatively affected by the co-channel interference from

the strong user. Cooperative transmission can improve the weak user’s data rate.

In [61], a cooperative NOMA protocol relying on cooperation among the NOMA users has

been proposed. Particularly, consider a downlink transmission example with two users, where

cooperative NOMA transmission is performed in two phases. During the first phase, the BS

broadcasts the superimposed mixture of the users’ signals. In the second phase, the strong user

acts as a relay and forwards the weak user’s message to the weak user, by using short-range

communications, such as Bluetooth or WiFi. Furthermore, it is shown in [61] that, even if short-

range communications are not used, the performance of cooperative NOMA is still superior to

cooperative OMA. The reason for this is that cooperative NOMA requires two time slots only,

if short range communications is not used. In contrast, cooperative OMA needs three time slots,

where the BS uses two time slots to deliver the two messages to the two users, respectively,

and one additional time slot is needed for the strong user to assist the weak user. The spectral

efficiency of cooperative NOMA can be further improved by employing full duplexing relaying,

as shown in [62]–[64]. In these works, by using full duplexing, the strong user receives the signals

from the BS and carries out relay transmission simultaneously. This avoids the disadvantage

of half-duplexing relaying, which requires a dedicated time slot for relay transmission. It is

worth pointing out that the concept of full duplexing can be applied to non-cooperative NOMA

scenarios and is shown to be effective to improve the spectral efficiency of the joint design of

uplink and downlink [65].

B. Employing dedicated relays

Another form of cooperative NOMA employs dedicated relays to assist the NOMA users, as

shown Fig. 4. One motivation for this form of cooperative NOMA is to spectrally efficiently reach

users close to the cell edge. The resulting benefits are illustrated with the following example.

Assume that there is a dedicated relay which is used to help two users located close to the cell

edge. When cooperative OMA is used, four time slots are required for transmission. In particular,

it takes two time slots for the BS to deliver the two users’ information to the relay, and another

two time slots for the relay to deliver the messages to the two users. With cooperative NOMA,

only two time slots are required, one for NOMA broadcasting from the BS to the dedicated relay

and the other one for the NOMA transmission from the relay to the two users. The superior

spectral efficiency of cooperative NOMA can be immediately deduced from the fact that the
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Fig. 4. An illustration of the two forms of cooperative NOMA.

required number of time slots is reduced from four to two. The benefits of buffer-aided relaying

on NOMA with a dedicated relay is investigated in [66]. Note that the idea of cooperative NOMA

employing dedicated relays is general and has been applied to various scenarios with different

numbers of transmitters and receivers [67]–[71].

The other motivation for using dedicated relays is that there can be a large number of idle users

in wireless networks, e.g., in networks deployed in sport stadiums or convention centers. These

idle users can be used as dedicated relays to help other users and to improve system coverage.

When many dedicated relays are available, a relevant problem is relay selection, which was

studied for the first time for NOMA in [72]. An important conclusion drawn in this work is that

the max-min criterion, which is optimal for conventional cooperative networks, is not optimal for

cooperative NOMA. Thus, a two-stage relay selection protocol was proposed, where users are

ordered according to their QoS requirements, instead of their channel quality. Particularly, in the

first stage of relay selection, relays which can guarantee the performance of the user with strict

QoS requirements are identified and grouped into a subset. The second stage is used to select

from the qualified relay subset the relay that yields the largest rate for the other user which only

needs to be served opportunistically. It is proved in [72] that this relay selection strategy does

not only outperform the max-min scheme, but also minimizes the overall outage probability.
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VI. MILLIMETER-WAVE (MMWAVE) NOMA

MmWave transmission has been identified as one of the key enabling technologies for 5G

[73]. Both mmWave communications and NOMA are motivated by the fact that the spectrum

resources below 6 GHz available for wireless communications are limited. Unlike NOMA, which

increases the spectrum efficiency, mmWave utilizes the less-occupied mmWave frequency bands.

In July 2016, the US Federal Communications Commission (FCC) approved that more than 10

GHz of spectrum in the mmWave bands above 24 GHz are made available for 5G wireless

communications, a key milestone for mmWave communications [74].

Even though there is a huge amount of spectrum resources available in the mmWave bands,

the use of NOMA is still important in mmWave networks for the following two reasons. Firstly,

the application of NOMA in mmWave networks provides an important tool to support massive

connectivity. For example, assume that a mmWave network is deployed in a sports center with

thousands of users. The use of NOMA ensures that a huge number of users with different QoS

requirements can be served simultaneously, which is not possible with OMA. Secondly, the rapid

growth of the demand for emerging data services, such as virtual reality and augmented reality,

will quickly dwarf the gain obtained from using the mmWave bands. For example, [75] predicts

that a data rate of 1000 Gbits/s is required to deliver a high quality telepresence. The use of

NOMA can effectively improve the spectral efficiency of mmWave communications, and cope

with the rapidly growing demands [76].

It is worth noting that some features of mmWave propagation also facilitate an effective

combination of the two 5G technologies. Particularly, the high directionality of mmWave

transmission means that users in mmWave networks may have strongly correlated channels.

For example, consider a mmWave network in which the BS is equipped with M antennas and

each user has a single antenna. As shown in [77] and [78], the k-th user’s M×1 channel vector,

denoted by hk, can be expressed as follows:

hk =
√
M

aka(θk)√
1 + dαk

, (13)

where M is the number of antennas at the BS, a(θ) = 1√
M

[
1 e−jπθ · · · e−jπ(M−1)θ

]T
, θk

denotes the normalized direction of the line-of-sight (LOS) path, dk is the distance between

the k-th user and the BS, α is the path loss exponents for the LOS path, and ak denotes the

complex gain for the LOS path. For simplicity of illustration, we ignore the non-line-of-sight
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(NLOS) paths, since their magnitude can be 20dB weaker than that of the LOS path [78],

[79]. In a network with densely deployed users, it can be expected that several users, such as

users 1 and 2 shown in Fig. 5, will share the same normalized LOS direction, which means

that their channels are strongly correlated. In OMA based networks, channel correlation reduces

the multiplexing gain and the system throughput. However, as illustrated with the principle of

quasi-degradation [41], when users’ channel vectors are strongly correlated, the use of NOMA

can yield the DPC performance, i.e., the optimal performance for MIMO transmission. In other

words, NOMA is well aligned with the characteristics of mmWave transmission and leads to

substantially improved system throughput.

BS 

u1 

u2 

u3 

Fig. 5. Random beamforming in a mmWave-NOMA communication network. Users, whose channels are strongly correlated,

are paired together to share the same beam and perform NOMA.

In practice, mmWave transmission is commonly combined with massive MIMO, since the use

of mmWave communications makes it possible to pack a large number of antenna elements in

a small area. However, the performance gain of this combination can be realized only if the

massive MIMO BS has perfect channel state information (CSI), an assumption that is difficult

to realize in practice [80]. In [81], the use of random beamforming is proposed for mmWave-

NOMA networks, in order to reduce the system overhead. Particularly, random beamforming

vectors are generated by the BS, and each user needs to feed back only its scalar effective

channel gain to the BS, instead of the whole channel vector. Note that the system overhead

can be further reduced by exploiting the directionality of mmWave transmission. For example,
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consider a randomly generated beam p = a(θ̄), where θ̄ is randomly generated. The effective

channel gain of a user for this randomly generated beam, |hHj p|2, can be written as follows:

|hHj p|2 =
|aj|2

∣∣∣∑M−1
l=0 e−jπl(θ̄−θj)

∣∣∣2
M(1 + dαj )

(14)

=
|aj|2FM

(
π[θ̄ − θj]

)
(1 + dαj )

,

where FM(x) denotes the Fejér kernel. As shown in [78] and [81], the behavior of the Fejér kernel

is very similar to that of the sinc function, i.e., the magnitude of the Fejér kernel FM
(
π[θ̄ − θj]

)
is rapidly decreasing for increasing [θ̄− θj]. By exploiting this phenomenon, it is shown in [81]

that for a given beam not all the users need to feed back their channel conditions. For example,

in Fig. 5, for beam 1, only users 1 and 2 need to feed back their channel conditions, and there

is no need for the other users to feed back their channel gains since their effective channel gains

for this beam will be very small.

VII. PRACTICAL IMPLEMENTATION OF NOMA

In this section, we discuss a number of important implementation challenges which have to

be addressed before NOMA can be successfully applied in practical wireless systems.

A. Coding and Modulation for NOMA

Effective channel coding and modulation schemes are crucial for NOMA, in order to ensure

that the achievable rates predicted by theory can be realized in practice. For example, in [82]

and [83], pulse amplitude modulation (PAM) combined with gray labeling and turbo codes is

applied to NOMA. The resulting new NOMA scheme, which does not rely on SIC, is shown to

be superior to conventional OMA and NOMA schemes. In addition to turbo codes, other types

of channel codes are also applied to NOMA, see e.g. [12] and [84]. The impact of finite-alphabet

inputs on NOMA assisted Z-channels is studied in [85].

More importantly, the integration of sophisticated coding and modulation with NOMA has

also led to the development of new forms of NOMA, such as Network-Coded Multiple Access

(NCMA) [86] and LPMA [12]. For illustration purpose, take LPMA as an example. LPMA is

based on the property of lattice codes that an integer linear combination of lattice codes is still

a lattice code. For a downlink scenario with two users, as shown in Fig. 6, LPMA encodes two

users’ messages by using lattice coding, such that the transmitted signal is a linear combination
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of the two encoded messages which are multiplied with a prime number, respectively, i.e., the

weak user’s message is multiplied by a larger prime number, denoted by p1, and the strong user’s

message is multiplied by a smaller one, denoted by p2, p1 > p2. Multiple access interference

is removed by using the modulo operation at the receivers as shown in Fig. 6, where the weak

user employs a modulo operator with respect to p2 in order to remove the strong user’s message.

We note that the manner in which LPMA removes multiple access interference is very similar

to direct-sequence code division multiple access (DS-CDMA). However, LPMA avoids a severe

disadvantage of CDMA, namely that the chip rate is much larger than the data rate. As shown

in [12], LPMA can outperform conventional power domain NOMA, particularly when the users’

channel conditions are similar.
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Fig. 6. An example for LPMA downlink transmission with two users.

B. Imperfect CSI

Imperfect CSI is one of the key obstacles in realizing the performance gain of NOMA in

practice. In general, different categories of imperfect CSI are distinguished, namely channel

estimation errors, partial CSI, and limited channel feedback.

• Channel estimation errors are caused by the imperfect design of channel estimation

algorithms and noisy observations, and are damaging to NOMA networks, since these errors

result in user ordering ambiguities. The impact of channel estimation errors on power-

domain NOMA and SCMA is studied in [87]–[89], and the design of pilot transmission

for NOMA schemes is investigated in [90]. These studies have demonstrated that NOMA

is actually more resilient to channel estimation errors, compared to OMA. The resource

allocation problem is studied in [91] for multi-carrier NOMA when only statistical CSI
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is available at the transmitter. The proposed design exploits the heterogeneity of the QoS

requirements and the statistical CSI to determine the SIC decoding order. The proposed

suboptimal NOMA power allocation and user scheduling scheme achieves a close-to-optimal

performance and significantly outperforms OMA.

• The use of partial CSI is motivated by the fact that small scale multi-path fading varies

much faster than large scale path loss. This means that learning the path loss information

of the users’ channels requires less overhead at the transmitter than estimating both multi-

path fading and path loss. In [92], [93], the use of such partial CSI in NOMA networks is

considered, and it is shown that this partial CSI is sufficient for realizing the performance

gains that NOMA offers over OMA.

• The benefit of limited feedback is to reduce the system overhead, compared to the case

that each receiver feeds all channel information back to the transmitter [94], [95]. Let’s

consider the one-bit feedback NOMA scheme, proposed in [94], as an example. The BS

broadcasts a threshold to all the users. Each user compares its received signal strength to

this threshold and feeds 1 (or 0) back to the BS, if its signal strength is above (or below)

the threshold. This one-bit feedback is particularly important for NOMA networks, when

the nodes are equipped with multiple antennas, e.g., [52] and [81]. Instead of feeding back

the whole vector/matrix, each user only needs to feed back one bit to the BS. Obviously

the choice of the threshold is crucial for one-bit feedback schemes, and optimal thresholds

are developed in [94] for systems with different power constraints.

C. Cross-layer resource allocation

A typical NOMA network is a complex system, due to the multiple users that have to be

served, while the degrees of freedom for resource allocation, such as user clustering/grouping,

power allocation, beamforming/precoding design, subcarrier allocation, etc., are coupled. Even

if a centralized resource allocation design can yield the optimal performance, this scheme entails

a prohibitive signaling overhead and complexity [32] and [96]. As a result, distributed resource

allocation in NOMA networks has attracted significant attention.

In [97], the energy efficiency of NOMA is investigated, where power allocation and subchannel

assignments are jointly designed by applying the difference of convex (DC) programming

method. In [98], a queuing theoretic approach for joint rate control and power allocation is

proposed. In [99], the system throughput maximization problem is studied for both uplink and
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downlink NOMA, where power allocation and user clustering are optimized in an alternating

manner. A similar alternating approach is also proposed in [100] by employing proportional

fairness to decouple the joint design of user scheduling and power allocation. If only two

users are served at each subchannel, the problem of user pairing in the context of NOMA

can be modeled by applying matching theory. For example, each user has a preference list

which specifies with whom this user wants to be paired, and matching theory can effectively

model the dynamic interactions among the users. Motivated by this observation, various matching

theory based schemes for user pairing have been developed for NOMA communication scenarios

[101]–[103].

VIII. FUTURE RESEARCH CHALLENGES

In this section, a number of promising directions for future NOMA research are outlined.

A. The application of wireless power transfer to NOMA

The motivation for the application of simultaneous wireless information and power transfer

(SWIPT), a new member of the energy harvesting family [104]–[106], to NOMA can be

illustrated with the cooperative NOMA scenario considered in [107] as an example. As discussed

before, cooperative NOMA can effectively help the user with weak channel conditions, by

employing the strong user as a relay. However, in practice, this user may not want to perform

relaying, since this will consume its own energy and hence shorten its battery life. With SWIPT,

the strong user can harvest energy from the signals sent by the BS, and exploit the harvested

energy to power the relay transmission. As a result, the strong user will have more incentive to

perform relaying and help the weak user. Following the idea of [107], in [108], the transceiver

design for cooperative SWIPT-NOMA is investigated. The achievable rate region of wireless

power transfer assisted NOMA is characterized in [109]. The impact of user selection and

antenna selection on cooperative SWIPT-NOMA is studied in [110] and [111], respectively.

Note that SWIPT is not only applicable to cooperative NOMA, but is also useful for other

NOMA communication scenarios. For example, in [112]–[114], SWIPT is applied for NOMA

uplink transmission, where users harvest energy from the BS and then send their information to

the BS simultaneously by using the NOMA principle. Resource allocation for this form of uplink

SWIPT-NOMA transmission is studied in [115], where power allocation and the durations for

power and information transfer are jointly designed in order to combat the doubly near-far effect.



23

It is noted that most existing SWIPT-NOMA schemes rely on various idealizing assumptions, and

the impact of practical constraints, such as hardware impairments, the nonlinear energy harvesting

characteristic, circuit energy consumption, etc., on the performance of SWIPT-NOMA has not

been investigated yet.

B. The combination of NOMA and cognitive radio networks

As discussed in Section II, the application of the cognitive radio concept can significantly

reduce the complexity of the design of power allocation policies and strictly guarantee the users’

QoS requirements [13], [28], [116]. The interplay between the two communication concepts is

bi-directional, and the application of NOMA is also important to cognitive radio networks.

For example, in [117], the NOMA principle is applied to large scale underlay cognitive radio

networks, in order to improve the connectivity of secondary networks. Unlike for applications of

NOMA in conventional wireless networks, the power of the superimposed signals of cognitive

radio NOMA users needs to be constrained in order to avoid excessive interference to the

primary receivers. In [118], NOMA is employed by the secondary transmitter, which supports

two functionalities. One is to deliver information to its own receivers, i.e., the secondary receivers,

and the other one is to act as a relay helping the primary receivers. The current research results

on the combination of NOMA and cognitive radio networks are still very much dependent on

the considered network topologies, and more work is needed to gain a fundamental and general

understanding of the synergy between these two advanced communication techniques.

C. Security provisioning for NOMA

Similar to other multiple access techniques, security provisioning was not considered when

the NOMA principle was developed. A particular security risk with NOMA is that for SIC to be

performed, one user has to be able to decode the other user’s message. It is worth pointing out

that such a security risk also exists for other multiple access techniques, e.g., a TDMA user can

switch on during a time slot not allocated to it and attempt to decode another user’s information.

In todays’ telecommunication systems, security is provided by encryption techniques, instead of

relying on multiple access strategies.

However, initial studies have shown that the use of NOMA is helpful in improving transmission

security, particularly in the following two types of scenarios:
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• For scenarios with external eavesdroppers, the NOMA principle can be combined with

physical layer security (PLS) [119]–[122]. Particularly, the benefit of NOMA is that the

NOMA power allocation coefficients are designed according to the legitimate users’ channel

conditions, which means that SIC at the eavesdroppers might not be possible and hence

eavesdropping may be effectively suppressed.

• For scenarios in which some NOMA users are potential eavesdroppers, NOMA is shown

to be helpful in avoiding eavesdropping in [60]. Particularly, the NOMA principle is used

in [60] to send multicast and unicast messages simultaneously. Beamforming at the base

station is carefully designed to artificially enlarge the difference between the two types of

users’ channel conditions, which is helpful to increase the secrecy data rate.

The combination of PLS and NOMA is a rich and promising research area, and more research

is needed to develop practical and low complexity schemes for realizing security in NOMA.

D. Applications of NOMA to other 5G scenarios

As a promising 5G technique, NOMA has been shown to be compatible with other key enabling

techniques for 5G communications. For example, the heterogeneous network architecture will

play an important role in 5G networks, where macro base stations and small cell base stations

cooperate for spectrum sharing. The benefits of NOMA for heterogeneous networks has been

demonstrated in [123]–[126], as more users can be served in a small cell by exploiting the

NOMA principle. In [127]–[130], the applications of NOMA to machine-to-machine (M2M)

communications, ultra-dense networks (UDN), and massive machine type communications

(mMTC) are studied, respectively, where the use of NOMA can effectively support massive

connectivity and the IoT functionality of 5G. Content caching is another important technique

which has been recognized as a spectrally efficient way to deliver content to users, and the

application of NOMA to content caching is considered in [131].

E. Emerging applications of NOMA beyond 5G

The NOMA principle is quite general and its application is not limited to cellular networks. As

discussed in the introduction, the NOMA principle has already been used for TV broadcasting

and has been included into the next generation TV standard [22]. In addition, the concept of

NOMA has attracted significant attention from the visible light communications (VLC) research

community [132]–[136]. As outlined in [132], the application of NOMA in VLC systems is
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beneficial to support more users, and the fact that VLC offers high SNRs is beneficial for the

application of NOMA, since the performance gap between NOMA and OMA is large in the

high SNR regime. While the existing studies have shown that NOMA-VLC outperforms OMA-

VLC, there has been little work on MIMO-VLC. Note that VLC channels are quite different

from conventional radio frequency fading channels, and the users’ channels in VLC can be

strongly correlated. As indicated by the quasi-degradation criterion in [41], the use of NOMA

in scenarios with strongly correlated channels can offer a performance close to the optimal DPC

performance. Therefore, a promising future direction in NOMA-VLC is to apply the NOMA

principle for the design of VLC precoding/beamforming. Other important applications of NOMA

beyond 5G include integrated terrestrial-satellite networks [137], ALOHA based random access

networks [138], and vehicular ad-hoc networks [139]–[141].

IX. CONCLUSIONS

NOMA is an important enabling technology for achieving the 5G key performance require-

ments, including high system throughput, low latency, and massive connectivity. As shown in this

survey, by exploiting the users’ heterogeneous channel conditions and QoS requirements, NOMA

can utilize the scarce bandwidth resources more efficiently than OMA, and existing studies have

already clearly demonstrated the ability of NOMA to improve the system throughput. Since

multiple users can be served simultaneously, massive connectivity can be realistically achieved

with NOMA, and NOMA networks also reduce the delay since users are no longer forced to wait

until an orthogonal resource block becomes available. The recent industrial efforts to include

NOMA in 5G, LTE-A, and digital TV standards demonstrate that NOMA will be an integrated

part of future generation wireless networks, and we hope that this survey and the papers in this

special issue will be useful to the readers to gain a better understanding of the benefits and

opportunities that NOMA offers as well as its practical application scenarios.
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