
Pacific Graphics 2025
M. Christie, N. Pietroni, and Y.-S. Wang
(Guest Editors)

COMPUTER GRAPHICS forum

Automatic Reconstruction of Woven Cloth from a Single Close-up

Image

C. Wu1 , A. Khattar1 , J. Zhu3 S. Pettifer1 L. Yan2 and Z. Montazeri1

1University of Manchester, United Kingdom
2Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE.

3Shandong University, China

Abstract

Digital replication of woven fabrics presents significant challenges across a variety of sectors, from online retail to enter-

tainment industries. To address this, we introduce an inverse rendering pipeline designed to estimate pattern, geometry, and

appearance parameters of woven fabrics given a single close-up image as input. Our work is capable of simultaneously optimiz-

ing both discrete and continuous parameters without manual interventions. It outputs a wide array of parameters, encompassing

discrete elements like weave patterns, ply and fiber number, using Simulated Annealing. It also recovers continuous parameters

such as reflection and transmission components, aligning them with the target appearance through differentiable rendering. For

irregularities caused by deformation and flyaways, we use 2D Gaussians to approximate them as a post-processing step. Our

work does not pursue perfect matching of all fine details, it targets an automatic and end-to-end reconstruction pipeline that

is robust to slight camera rotations and room light conditions within an acceptable time (15 minutes on CPU), unlike previ-

ous works which are either expensive, require manual intervention, assume given pattern, geometry or appearance, or strictly

control camera and light conditions.
CCS Concepts

• Computing methodologies → Computer graphics; Rendering;

1 Introduction

Woven fabrics play an important role across various domains, rang-
ing from online retail to entertainment industries, such as games
and movies. The digital replication of fabric samples, a process es-
sential in these fields, presents significant challenges due to their
complex microstructure. This structure, characterized by repeated
weave patterns composed in turn of yarns, plies, and fibers, greatly
influences the overall appearance, despite not being explicitly visi-
ble.

Previous approaches employ generic shading models for inverse
rendering [DAD*18; GSH*20], which often result in suboptimal
outcomes for fabrics with special micro-geometry. Other methods
that leverage surface-based shading models specialized for cloth
often either overlook the transmission and microscopic details in
close up [JWH*22], or require manual interventions [WCZ*19].
Alternatively, image-based methods [SZK15; GHCG17] can re-
cover fabrics with fine-grained details in the form of texture, but
can not generalize to different camera views and light conditions.
However, the Bidirectional Texture Function (BTF) as an intensive
data-driven method [KBD07] is rather expensive and impractical
to capture and store. Similarly, complex capture setups such as CT

scans have also been employed to reproduce the microgeometry of
fabrics [ZJMB11], which are still expensive to capture.

More recently, a method using a surface-based shading model
has been proposed [TLH*24] to adapt transmission, but it requires
two images captured under two different light settings and still only
handles far-view images without including weave patterns estima-
tion, and strictly fixed camera and light setup, which constrains its
practical application. Although they claim that their method can be
used after applying pattern estimation methods, we find it subopti-
mal to divide the full problem into two parts, separately estimating
pattern and appearance. We elaborate on this in our ablation study
in § 7.5.

In response to these limitations, we propose an inverse render-
ing pipeline aimed at procedural cloth parameter estimation using
one captured image in close-up with a mobile phone. Our method
encompasses the estimation of pattern, geometry, and appearance
parameters, ranging from discrete parameters such as the number
of plies and fibers, to continuous parameters like reflection and
transmission components. Building on a realistic yarn-based shad-
ing model [KZP*24], our approach integrates explicit modeling of
yarn, ply, and fiber geometries using B-spline curves defined by
control points. This detailed modeling better fits the light reflec-
tion and transmission in the captured images. To pursue global op-
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Init Process (Starting from pre-est) Ours Reference

Figure 1: From a single input image capturing a woven fabric on a close-up, our method estimates a comprehensive set of parameters for

digital cloth replication. It identifies weave patterns, geometry details such as ply and fiber count, alongside key appearance components such

as reflection. This is achieved through a joint discrete-continuous optimization approach, with Simulated Annealing and Gradient Descent, to

ensure a possible match to the reference image without prior assumptions or manual effort. Please play the animation in the second column

or the video in the supplementary materials, showcasing the process of joint optimization of pattern, geometry, and appearance. Note that

the animation shows the pre-estimation in the beginning and the post-estimation at the end.

tima under various ambiguities, we combine differentiable render-
ing with simulated annealing [KGV83] to address both differen-
tiable and non-differentiable parameters. In summary, our work’s
contributions include:

• an end-to-end inverse rendering pipeline that recovers both the
pattern and the appearance parameters of woven fabrics with-
out any manual interventions and fixed camera and light set-
tings.

• a neural network to provide initial parameters for optimiza-
tion.

• a joint optimization strategy for discrete and continuous pa-
rameters combining Simulated Annealing and Gradient De-
scent.

• a post-processing step of approximating noise and irregulari-
ties with a set of 2D Gaussians.

2 Related Works

2.1 Cloth Pattern

The creation of woven patterns involves interlacing horizontal and
vertical yarns known as warps and wefts, which are themselves
composed of plies that in turn made up of hundreds of fibers
[IM12]. Due to the alternative ups and downs of warps and wefts,
a weave pattern can be efficiently represented by a binary matrix.
The estimation of patterns from an image has two steps, detecting
the minimum size, and estimating a binary matrix representing weft
and warp.

Previous methods [ANB12; ABN13] used the superposition of
distance matching functions (DMFs) of all rows and columns from
an image and its forward difference to get the size of the small-
est pattern. An alternative approach [RSP*19] extracts candidate
patches from CNN activations of an input image and tiles them to
compare the perceptual loss with the input to confirm the size of the

minimum pattern. While these methods work for general repeated
patterns, but do not estimate the binary matrix of woven patterns as
its special nature.

Some studies estimate the binary matrix by binary classification
based on image features. Such as the histograms of image gradient
[XNZL14], gray means, variances, and level co-occurrence matrix
(GLCM) [JXL15], multiscale wavelet features [HC18] and used
fuzzy c-means clustering (FCM) to classify these features into weft
and warp. Besides to FCM, other classification methods are also
proposed, like Support Vector Machine (SVM) [GHCG17], which
is used to classify yarn segments from region growing. In addi-
tion, a deformable part model (DPM) trained using latent SVM
[WCZ*19] is proposed to detect the yarn bounding box. However,
it requires manual adjustments, which take about 3-5 minutes for
a trained user in addition to the 15 minutes of the run time. Jin et
al. [JWH*22] trained a neural network on a synthetic dataset to es-
timate patterns, but due to the limited dataset, it only covers three
types of patterns and their 90-degree rotations. While these meth-
ods work for general cases, they treat the weave pattern as an in-
dependent part of the woven cloth appearance. Once the estimated
pattern is incorrect, it hinders the following geometry and appear-
ance estimations, and thus makes an end-to-end recovery pipeline
without manual corrections impossible.

2.2 Cloth Geometry

The study of cloth geometry heavily emphasizes the microstruc-
ture of the material. One notable approach to understanding cloth
microstructure involves the use of CT scan data. This technique, ex-
plored in depth by [ZJMB12] provides a detailed volumetric analy-
sis of cloth. However, the CT scan method is particularly expensive,
and the resultant data is challenging to edit.

Additionally, Schroder et al. [SZK15] made significant strides
in this field by presenting a procedural yarn model. This model,
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Figure 2: Overview of our Pipeline. The process begins with a captured image as input and aims to produce a digital replica of the fabric.

Initially, we align and rectify the image to mitigate the influence of capture settings, and regularize the image for pre-estimation. Then, we

extract the minimum repeating weave pattern from the regularized image and determine the yarn size and spacing. Using this information,

we pre-estimate the weave pattern and appearance parameters of the weft and warp, setting the initial conditions for optimization. In the

following stage, we jointly optimize both discrete and continuous parameters through a combination of simulated annealing and gradient

descent, resulting in an accurate estimation of pattern, geometry, and appearance aspects of the fabric. Finally, we estimate the noise and

irregularities of captured images with a set of 2D Gaussians and apply it to rendering results to provide better realism.

while effective in capturing the intricate details of yarn structures,
required manual selection of model parameters, posing challenges
in terms of usability and flexibility. Building on this, Zhao et
al. [ZLB16] further developed this concept by fitting the model at
a fiber level, which enhanced precision but was resource-intensive
in terms of storage and rendering, thus restricting practicality. No-
tably, a fiber-based model, comprising hundreds of fibers per yarn,
typically demands at least ten times the rendering time and a hun-
dred times more storage compared to a yarn-based model.

Further, Guarnera et al. [GHCG17] focused on estimating yarn
parameters within both the spatial and frequency domains for wo-
ven fabrics. Their methodology facilitated high-quality yarn-level
recovery, marking a substantial improvement in the accuracy of
cloth simulations. Despite the advancements in geometry recov-
ery, they utilize generic appearance models and are not optimal for
fabrics, specifically.

Wu et al. [WCZ*19] developed a method to estimate fiber orien-
tations and discretize them into sticks. By tracing the sticks, they
obtain the fiber geometry. However, this technique is based on a
surface-based model by Irawan and Marschner [IM12] and shows
a particular limitation when dealing with transparent yarns.

Most recently, Trunz et al. [TKM*24] proposed a neural inverse
procedural modeling to capture detailed fiber and yarn geometry
parameters. However, this relies on a single loose yarn and disre-
gards the appearance parameters and pattern. Please refer to the
survey for more work in this area by Castillo et al. [CLA19].

2.3 Cloth Appearance

A key approach in cloth appearance is the capture of Spatially Vary-
ing Bidirectional Reflectance Distribution Functions (SVBRDF).
Some studies like [LDPT17; DAD*18; GSH*20] primarily utilized
single-image methods to estimate the parameter maps of a generic
shading model, encompassing attributes like albedo, normal, and
roughness. However, all these methods use maps and are non-
procedural. Besides, they are not specifically optimized for fabric
rendering, leading to potential inaccuracies in capturing the unique
visual characteristics of fabrics.

Hu et al. [HDR19] introduced a method for predicting procedu-
ral material parameters from input images. However, it was also

designed for general material types and did not specifically target
cloth materials. As a result, while effective in a broader context,
this method is not optimal for the unique challenges of cloth ap-
pearance.

The development of micro-appearance models for cloth is
mainly derived from the individual strands of fabric structure, sim-
ilar to hair [MJC*03]. Irawan and Marschner [IM12] and later
several yarn-level appearance models [SBDJ13; ZMA*23; SM23]
built upon the individual hair model and proposed forward surface-
based appearance models for fabrics. These models lack the fiber-
level details and they do not offer an inverse framework for param-
eter fitting.

In a departure from traditional surface-based models, Khungurn
et al. [KSZ*15] computes cloth appearance using a curve-based
model at the fiber level. This method represents high-fidelity ren-
derings of fabrics, capturing the intricate details that are often
missed in previous models. However, its practical application is
hindered by the significant resources required for both storage and
rendering time.

To tackle these challenges, a ply-based approach was proposed
as an encapsulated cloth model that enhances the performance
by aggregating the light interaction in the ply level for woven
([MGZJ20]) and knitted ([MGJZ21]) fabrics. However, their in-
verse rendering framework is basic and does not yield the most
accurate results. Later, Khattar et al. [KZP*24; KZYM25] adapted
the model to function at the yarn level, thereby enhancing perfor-
mance even further while maintaining the fiber detail fidelity. In our
research, we incorporate this model into our own inverse frame-
work.

Recently, Wang et al. [WJHY22] proposed the Sponge-Cake
model, defining each layer of the fabric as a volumetric medium.
A key feature is its use of microflake distribution to describe these
layers. Following this, Jin et al. [JWH*22] introduced the inverse-
SpongeCake model for cloth, but with a notable limitation of three
types of weave patterns without considering transmission, and the
assumption of knowing the camera and light. The following work
[TLH*24] extends it to adapt transmission by requiring one more
image with only back-lit on to pair with the one captured with front-
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lit, but still has the limitation of only considering a few types of pat-
terns, and the same assumption of knowing the camera and light.

3 Background

3.1 Cloth Structure

In textile modeling, particularly for woven fabrics, a fundamental
characteristic is their construction from repeated weave patterns.
Instead of requiring a comprehensive analysis of the entire fabric,
our approach focuses on identifying and estimating the parameters
of the smallest unit of repetition, referred to as the "minimum re-
peating pattern". Once the geometry and appearance of the weave
pattern are determined, the yarns will be tiled to reconstruct the
entire fabric by copying the minimum repeating pattern along the
surface.

3.2 Forward Model

As the study of the cloth forward model develops, many advanced
techniques have shown up. While our framework can utilize any
forward model, we chose to build upon the state-of-the-art yarn-
based model [KZP*24] with explicit representation of yarn curves
using B-spline curves. The plies and fiber details are added pro-
cedurally using texturing techniques, allowing for a practical yet
relatively accurate geometric model. Our forward shading model
employs their approach, capturing the intricate interactions of light
with the yarn using the Bidirectional Yarn Scattering Distribution
Function (BYSDF). It encompasses four components, including
specular reflection and transmission, accounting for the light that
directly escapes from the fabric’s front and back surfaces, respec-
tively. Similarly, the model also considers body reflection and trans-
mission, which represent the light that scatters as it interacts with
the yarn, emerging from both the front and back sides of the fabric.
Each of these four components is governed by a set of parame-
ters, all of which are included in Tab. 1 and discussed in § 3.3. The
main advantage of adopting this model as our forward rendering
tool, compared to more conventional models [IM12], is due to its
capability to accurately simulate light reflection and transmission.
This feature, often overlooked in prior research, aligns more closely
with the requirements of our practical inverse-rendering approach.
We will further elaborate on it in Fig. 9 and § 6.4.

3.3 BYSDF

The BYSDF model consists of forward and backward components
to capture the part of the light that bounces back and the part that
travels forward. The backward component captures both the im-
mediate reflection, which is part of the specular property f S

x , and
the scattered light that exits the medium from the same side as the
incident ray, referred to as the body property f B

x . Then, using the
transmission component of f S

x , we sample a point y on the yarn sur-
face as the exit point, following the GGX distribution. Lastly, the
forward component represents both the specularly transmitted light
f S
y and the scattered light f B

x that continues in the forward direction.

Specular Component: The specular components f S
x and f S

y rep-
resent the prominent highlights on the fabric surface when light
reflects immediately or transmits through the fabric without being
scattered. The BYSDF model utilizes a rough dielectric BSDF with

Table 1: Shading model parameters optimized in our experiments.

Warp yarns are marked with a subscripts and weft yarns with e sub-

scripts. The top three parameters are discrete, and the remaining

are continuous parameters. The right column shows the empirical

range of parameters for the dataset generation, VGG prediction,

and regularization during joint optimization.

Name Meaning Type Range

D
is

cr
et

e P Weave pattern Array {0,1}
np Number of ply Int [1,7]
n f Number of fiber Int [20,50]

C
on

ti
nu

ou
s

mr Specularity coefficient Float [0.2,0.8]
RS Specular reflection Color [0,1]
T S Specular transmission Color [0,1]
T S

y Specular transmission at y Color [0,1]
αS Specular roughness Float [0,1]
αS

y Specular roughness at y Float [0,1]
ηS Specular IOR Float [1.4,1.6]
ηS

y Specular IOR at y Float [1.4,1.6]
AS Specular attenuation Float [9,11]
AB Body attenuation Float [0.1,0.7]
RB

e Body reflection / Texture (weft) Color/Array [0,1]
RB

a Body reflection / Texture (warp) Color/Array [0,1]
SB

e Body subsurface reflection (weft) Color [0,1]
SB

a Body subsurface reflection (warp) Color [0,1]
re Radius of weft Float [1,5]
ra Radius of warp Float [1,5]
Gp Ply-shadowing function Float [0,1]
G f Fiber-shadowing function Float [0,1]

a GGX distribution.

f
S
x (ωi,ωo) =



















RS
·

FxG2(ωi,ωo,ωh)D(ωh;αS)
4|ωi·n(x)||ωo·n(x)|

, (ωi ·ωo > 0)

T S
·

|ωi·ωo| |ωo·ωi|
|ωi·n(x)| |ωo·n(x)|

·

(ηS)2(1−Fx)G2(ωi,ωo,ωh)D(ωh;αS)

[(ωi·ωi)+ηS(ωo·ωi)]
2 , (ωi ·ωo < 0)

(1)

f
S
y (ωi,ωo)=















0, (ωi ·ωo > 0)

T S
y · τ(x,y,A

S)Ni
·

|ωi·ωo| |ωo·ωi|
|ωi·n(y)| |ωo·n(y)|

·

(1−Fy)G2(ωi,ωo,ωh)D(ωh;αS
y )

[ηS
y (ωi·ωi)+(ωo·ωi)]2

, (ωi ·ωo < 0)

(2)

where τ(x,y,AS)Ni is an attenuation between x and y using the
Beer-Lambert law [Swi62].

Body Component: To capture the scattering behavior of the
bundle of fibers as a whole and account for multiple scattering
components, we utilize a diffuse-like distribution to approximate
the sub-yarn scattering events [MGZJ20; YJR17]. At point y, the
body component f B

y is represented by a Lambertian term. On the
other hand, f B

x additionally considers a Lommel-Seeliger (LS) term
[HK93; JMLH01] as a mix to ensure energy conservation. The ex-
pressions for f B

x and f B
y are as below:

f
B
x (ωi,ωo) = mrGp(x,ωi)G f (x)R

B

[

LS(ωi,ωo)+
1
π

]

(3)

© 2025 The Author(s).
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where LS(ωi,ωo) refers to a Lommel-Seeliger term [HK93].

f
B
y (ωi,ωo) = (1−mr)Gp (x,ωi)G f (x)

SB

π
(4)

In our experiments, due to the alternative and repetitive nature of
weave patterns, we deploy two sets of body components for weft
yarns RB

e and warp yarns RB
a respectively, and one set of specular

components for both. However, it can be extended to yarn-wise for
knitted cloth, or even sample point-wise for customized cloth. For
example, to handle spatially varying colors, we extend the shading
model by replacing the Body reflectance RB

e and RB
a with a texture

map in our experiment § 7.2.

Self-shadowing Component: To address the limitations of ex-
isting yarn-based shading models, BYSDF introduces an additional
shadowing component that considers the occlusion caused by one
ply on another (Gp) and by one fiber on another (G f ). The mul-
tiplication of these two shadowing terms approximates the overall
amount of shadowing, compensating for the absence of explicit ply
and fiber geometries.

Yarn Gaps/Delta Transmission: As we only consider recover-
ing a pattern with a fixed camera setting, the gap between yarns can
be determined by the radius of yarn re and ra. Even if the ground
truth of the camera setting is unavailable, the cloth recovery re-
mains proportional to the target and can be transformed to the de-
sired scenes and re-rendered.

3.4 Discrete Parameters

Discrete parameters, such as weave patterns and the number of plies
and fibers, are either considered as a presumption at user-level,
which requires manual effort [WCZ*19] or greedily searched due
to its non-differentiability, which fails to promise global optima.
However, as discrete parameters contribute a great sense of real-
ism, suboptimal estimation of them will hinder the final recovery
quality.

Weave Pattern: Independent weave pattern detection has been
well studied with various vision and learning techniques [ANB12;
JXL15; MPG*21]. However, no methods promise 100% success
due to the degree of freedom of irregularities in captured images
and the loss of information in their image processing. Sometimes,
even manual identification is not easy due to the distraction of
color, such as the samples in Fig. 12. Previous methods [GHCG17;
WCZ*19; SZK15] apply pattern detection before appearance esti-
mation, which highly relies on correct pattern estimations. Incor-
rect patterns will mislead the appearance reconstruction and hinder
the final cloth recovery results, as shown in Fig. 6.

Number of Ply/Fiber: The number of ply and fiber have large
effects on cloth appearance both in far view and close view. How-
ever, they are difficult to estimate due to occlusions and irregular-
ities of the plies and fibers. Previous image-based methods do not
consider such parameters [SZK15; GHCG17], other methods ei-
ther apply a greedy strategy in the optimization [JWH*22] or adjust
them manually [WCZ*19].

Therefore, we consider discrete parameters to share the same op-
timization space with continuous parameters and have non-trivial
influence on the convexity. We elaborate on the details of our
method in § 6.

Figure 3: This shows our capture setup to obtain the input im-

age using a handheld mobile phone, under uncontrolled room light

conditions, allowing both front and back illumination by lifting the

fabric sample in the air. Note that this image is captured by a dif-

ferent device; thus, the fabric sample’s color looks different from

the actual capture shown in Fig. 8 (e).

4 Preparation

The input to our system is a single captured image of a piece of
cloth, taken by a handheld mobile phone from a close-up view
where the yarns are distinctly visible. The lighting condition during
capture is a room environment lighting that allows both reflection
and transmission when lifting the fabric sample in the air, as shown
in Fig. 3. We observed that when capturing at a very close distance,
strict camera and light controls are less necessary, as slight camera
shifts caused by handheld movement can be corrected through rec-
tification, which will be introduced in § 4.1, and the room light is
approximately soft and uniform.

The overview of our pipeline is listed in Fig. 2. In the first step,
we implement a preparation phase designed to refine the input im-
age, setting the stage for the most effective optimization. While
this preparation step can be omitted for synthetic data, which is
typically clean and well-defined, we have found it to be useful for
processing real-world samples that may include a range of anoma-
lies.

4.1 Rectification

One of the common challenges with real-world image capture is
the bias, particularly in the orientation of the yarns, which may not
align perfectly with the x and y axes of the image. To align this,
we employ the Radon Transform [Gri86], a technique for feature
extraction in image processing. By applying this transform, we can
find the predominant angle of the yarns in the image, denoted as the
angle of peak in the transform’s output. This angle subsequently
guides the rotation of the image, ensuring that the yarns align with
the axes, thus standardizing the orientation for all input images. To
eliminate the angular feature of highlight potentially introduced by
the direction of light reflections, we first apply a Laplacian filter on
the original image to ensure the edges of weft and warp yarns are
being rectified instead of the edges of highlights.

Besides, the misalignment of the input image can also be caused
by non-flat cloth swatches and camera perspective distortion, like
involuntary rotations in pitch and yaw. We apply a RANSAC-based
method [CDI14] to eliminate the other slight distortions and en-

© 2025 The Author(s).
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(a) Input (b) Rectified & regularized (c) DMF 2nd diff (d) Grid (e) Crop

Pattern width = 66 Pixel

Pattern height = 79 Pixel

Figure 4: (a) Given a captured image as input, which is not aligned and blurry, (b) we first rectify and regularize it. (c) Then we analyze

the second difference of DMFs to determine the pattern size in pixels. (d) The grid segmentation (fourth image) helps detect yarn density, (e)

leading to the cropped minimum repeating pattern.

Input Auto-rectified Ground truth

Figure 5: Given a distorted image as input, we can get the auto-

rectified result close to the manually adjusted ground truth.

hance the robustness to non-professional capture settings as shown
in Fig. 5.

4.2 Regularization

The objective of this step is to refine the input images into their
"ideal" weave pattern representations. This involves the elimination
of noise and irregularities that could potentially skew the optimiza-
tion results. Our approach utilizes a Gaussian filter to reduce the
noise while preserving the main features. In practice, we set the
standard deviation of Gaussian to 1/16 of yarn’s size in pixels as
a yarn usually contains 10-20 fibers in the vertical cross-section.
Following this, we apply Kernel Principal Component Analysis
(KPCA), a method for feature extraction and dimensionality reduc-
tion [SSM97]. It allows us to focus on the significant structural
elements of the weave pattern by discarding fine details and irreg-
ularities that do not contribute meaningfully to the overall pattern.

4.3 Minimum Pattern Size Detection

This phase is for identifying the minimum repeating pattern size in
the fabric’s weave. To accomplish this, we utilize a common tech-
nique that uses the superposition of distance matching functions
(DMFs) across the rows and columns of the image [ANB12] to de-
tect the same copies of the grid. Analyzing the maximum second
forward differences of these functions reveals the length and width
of the minimum pattern, measured in pixels. As illustrated in Fig. 4
(c), the orange mark shows the minimum pattern size in pixels.

It is noteworthy that our approach maintains its effectiveness
even for complex, custom-designed fabrics, where the number of
repeats could be as few as one (no peaks in the forward difference
of DMF).

4.4 Yarn Width Detection

To determine the yarn width, a spatial integral projection is ap-
plied in both horizontal and vertical orientations on the regularized

grey-scale image. This procedure yields two distinct graphs, within
which the valleys serve as indicators of the yarn intersections. By
measuring the average distance between these valleys, we can de-
termine the yarn’s size in pixels.

We divide the image into smaller cells of varying widths, trans-
forming the weave into a grid-like visualization as shown in Fig. 4
(d). Such segmentation is needed for accurately reasoning the num-
ber of wefts and warps comprising the minimum weave pattern.

Our preparation step, while enhancing practicality, is not fixed
and can be substituted with alternative methods. For instance, a user
interface could be used, allowing users to manually draw the min-
imum pattern. Also, besides the clean and well-defined synthetic
data, when the input image is not analyzable, this step can be by-
passed entirely by the user, as an example shown in Fig. 16. Nev-
ertheless, it is crucial to note that our automated approach yields
precise and robust results, offering practicality and accuracy with
no need for supervision.

5 Pre-estimation

5.1 Pattern Pre-estimation

An ideal weave pattern, characterized by its wefts and warps, can
be effectively represented as a binary matrix. The distinguishing
factors between weft and warp are their directions and their ups
and downs. This forms the basis of our objective function, which
is defined as the Mean Squared Error (MSE) between the rendered
images split into cells and the corresponding cells in the regularized
reference images.

To achieve this, we consider the aligned structure of a typical
weave pattern and segment the weave grid into smaller sub-spaces
based on their cross-sections, acquired in the previous step. The
gridded input is shown in the first column in Fig. 6. For each cell,
it is simplified into a binary state: either 0 or 1. Given the binary
weave matrix, we generate the B-spline curves to align the pattern
by adjusting the height of the control points to mimic the ups and
downs. The maximum height of a control point is on the peak of
the top yarn, set to the yarn width. For each cell, we set 12 control
points by default, and the heights are sinusoidally smoothed using
a Gaussian filter with a size of 16 and a standard deviation of 1.
The generation pseudocode of B-spline curves is provided in Ap-
pendix A. To determine the optimal state for each cell, we employ
the Simulated Annealing algorithm [KGV83] since the parameter
space is discrete. In our implementation, the temperature is set to 0,

© 2025 The Author(s).
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Crop grid Init pattern Pattern Pre-est Color Pre-est

Figure 6: We pre-estimate the weave pattern, diffuse and specular

color analytically from twill and grey by default. The output of pre-

estimation will be used as initial parameters for the following joint

optimization in § 6. Note that the pattern and color are not opti-

mum since they are pre-estimated separately, the mismatch (at the

bottom-right) of the pattern at the bottom right leads to a brighter

color of wefts and a darker color of warps.

Figure 7: We pre-estimate the other unanalyzable parameters with

a neural network that serves as a good initialization in § 6, similar

to Fig. 6. The neural network can not promise optimal recovery

directly either, because of the limitation of training data.

which is equivalent to looping over both states for all the cells and
picking the best configuration. An example is shown in the third
column of Fig. 6, given the init pattern.

5.2 Color Pre-estimation

Once the weave pattern is pre-estimated, the next step is determin-
ing a rough estimation to initialize the color of the weft and warp.
This allows us to assign the diffuse colors for the weft and warp, de-
rived from the rectified input image, averaged over the cells while
ignoring the edge 10% from each side. We average the pixels of
weft and warp that have top 10% intensity to assign the specular
color. Mapping the colors to the corresponding cell provides our
optimization setup with a plausible initialized state as shown in the
last column of Fig. 6.

5.3 Parameters Pre-estimation

Once the weave pattern is pre-estimated and a rough estimate for
color is determined, the next step is to determine a rough estima-
tion to initialize the rest parameters of weft and warp. For these
parameters that are difficult to analyze, we propose a compact net-
work to pre-estimate the parameters of woven fabric. This provides
a plausible initialized state to be used during our subsequent opti-
mization.

As shown in Fig. 7, this process begins with the use of a pre-
trained VGG network to capture the features of the input image.
Then, we employ two fully connected (FC) layers activated by
LeakyReLU to predict a given parameter. A Sigmoid function, ad-
justed with specific weight and bias, is then applied to calibrate the
output range. This adjustment enables prior knowledge of each pa-

rameter’s estimation. For instance, the Index of Refraction (IOR)
is restricted within the range of [1.4,1.6] for feasible outputs. The
ranges of other parameters are shown in Table 1. For each param-
eter, we train new FC layers while keeping the pre-trained VGG
fixed. For the training data, we generate 2000 images by randomly
sampling the parameter space as listed in Table 1. The generation
of explicit yarn geometry for different patterns in our dataset is pro-
vided in Appendix A.

When input images are unanalyzable or never learned by the
network, the pre-estimation step can also be bypassed by the user,
which makes the joint optimization longer to converge. An exam-
ple is shown in Fig. 16. In the ablation studies in § 7.5, the effect
of using pre-estimation as an initial state for our optimization is
elaborated in comparison to the randomized initialization.

6 Optimization Method

With the weave pattern and parameters pre-estimated, we achieve
a solid starting point for initiating joint rendering. This process al-
lows us to optimize both discrete and continuous parameters. The
loss function employed is the Mean Squared Error (MSE) between
the rendered and reference images. The complete list of parameters
that are optimized in our study is detailed in Table 1.

6.1 Continuous Parameters

Continuous parameters exhibit a direct correlation with changes in
the rendering, where changes can be tracked through derivatives,
hence directly differentiable. These parameters follow the formula-
tions of the yarn-based model capturing four components as stated
in § 3.3 to represent forward/backward reflection and body com-
ponents. However, continuous parameters need to be constrained
within a reasonable range during optimization; thus, we add a bar-
rier regularization similar to clamp:

Lb = λ · (max(0,x−a)2 +max(0,b− x)2) (5)

where x is the continuous parameter, a and b refer to the corre-
sponding lower and upper bounds of the data ranges in the Tab. 1.
In our experiments, λ is set to 0.01.

6.2 Discrete Parameters

Discrete parameters, such as weave patterns (including types like
twill, satin, or custom designs like floral patterns) and the number
of plies and fibers, do not correspond to a continuous change in the
rendering output when changes so not directly differentiable. The
optimization process presents a unique challenge when discrete pa-
rameters mix with continuous ones, potentially disrupting the con-
vexity of the objective space. To navigate this, we optimize discrete
parameters simultaneously with continuous ones. Instead of greedy
searching, we employ simulated annealing as a probabilistic strat-
egy to approach global optima for discrete parameters such as the
number of plies, the number of fibers, and the weave pattern.

In the context of optimizing the number of plies and fibers, we
initiate simulated annealing with an initial temperature of 100 and
gradually decay at a rate of 0.98. The temperature is set to this
value so that a particular percentage of uphill proposals is accepted
at the beginning. This specific approach is chosen because these

© 2025 The Author(s).
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(a) Crop (b) Regularized (c) Residual (d) Gaussians (e) Reference (f) Pre & joint opt (g) Post-process + (f)

Figure 8: (a) is a crop of minimum pattern from the input reference image; (b) refers to the regularized cropped image; (c) illustrates the

residual, which is the difference between reference and regularized image. (d) demonstrates the fitting of residuals with a set of 2D Gaussians.

(e) shows reference input image and then (f), shows the result of our joint optimization. Finally, in (g), we add the Gaussians to provide more

sense of reality.

parameters significantly influence the finer details of the cloth im-
age, thus increasing the likelihood of encountering multiple local
minima within these dimensions.

6.3 Noise Estimation

Inspired by previous work [SZK15; GHCG17], we also estimate
the image noise caused by flyaways, highlights, and other irregu-
larities as a post-estimation process. We use a set of 2D Gaussians
to estimate the frequency spectrum of these fine details. In the syn-
thesis of tiling, we sample the frequency spectrum from the esti-
mated Gaussians and transform it back to the time domain for the
new patch. After joint optimization, we add the estimated noise on
the rendering as post-processing to provide more sense of reality,
as shown in Fig. 8.

6.4 Light Setting

Our method does not target the recovery of lighting but only the
properties of cloth under common room light conditions. As our
shading model considers both the reflection and transmission com-
ponents, our method does not necessarily require a controlled light
for the captured input, but allows natural room light environments,
such as that is shown in Fig. 3. In Fig. 9, we compare our recovery
results with the references in three light conditions: with only front,
back, and both lit. The match of backlit appearance in Fig. 9 (b) and
(c) elaborates our shading model’s ability to handle the transmis-
sion component. Note that the three references are from the same
fabric swatch. In our experiments where the ground truth of the
light setting is unavailable, such as the public real data in Fig 10
(c), we assume that the input is captured in a natural room light
condition and deploy an ambient light with four directional lights
around the cloth in the optimization by default. For the synthetic
data in Fig 10 (a), where the light setting is available, we faithfully
follow it.

7 Results

7.1 Main Results

Fig. 10 demonstrates the robustness and precision of our inverse
rendering framework, evaluated across both synthetic and real data.
For all the results through the paper, we used the path-traced differ-
entiable renderer Mitsuba 3 [JSR*22], using an Intel i7 CPU. We
trained the FC layers in the neural network with a single NVIDIA
RTX 3080 GPU. The total time cost for the pipeline is about 15
minutes, with 3% allocated for preparation § 4, 17% for determin-
ing the initialization § 5, and the remainder dedicated to the actual

Reference Ours Ref zoom-in Ours zoom-in

(a
)

F
ro

nt
(b

)
B

ac
k

(c
)

B
ot

h

Figure 9: Our reconstructed results of the same fabric illuminated

with only front, back, and both lit.

optimization process § 6. If not otherwise specified, the light set-
ting in the experiments of this section is an ambient light with four
directional lights from the front, back, and two sides that mimic
common real-life environments.

Synthetic Data Evaluation: In our experiments with synthetic
data, shown in Fig. 10 (a), we tested our model on different fab-
ric types. The use of synthetic data enabled us to establish an ex-
act ground truth, shaded by our forward model so we could as-
sess the effectiveness of our method. Initially, our pre-estimation
state yielded a rough alignment in the overall fabric pattern and
appearance. Then, subsequent optimization steps improved the ac-
curacy of the parameter recovery by jointly optimizing a pool of
discrete and continuous parameters. Additionally, our model can
manage fabrics with varying warp and weft appearances for any ar-
bitrary weave pattern. Our model offers an advancement over pre-
vious methods like [WCZ*19] and [JWH*22], providing the abil-
ity to recover transparency and support multiple plies, unlike their
reflectance-only and single-ply approach.

Real Data Application: We also applied our pipeline to our ac-
tual measured fabric data with a handheld mobile phone and public
source fabric data† as illustrated in Fig. 10 (b) and (c). Given the
absence of ground truth parameters for these real samples, our eval-
uation focused on the visual similarity between the input images
and the images rendered using the estimated parameters. Render-
ings performed on a non-flat mesh in the last column further show
the plausible appearance achieved by our model.

† The reference images we use are available in https://exteta.it/
en/materials/fabrics/

© 2025 The Author(s).
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Reference Ours Reference zoom-in Ours zoom-in Generated yarns
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Figure 10: The results of our method given synthetic (first two rows), our mobile phone captured real pictures (middle two rows), and public

source real data (last two rows) as input. The first two columns show captured or generated images as references and our corresponding

recovery. In the third and fourth columns, we show a zoomed-in reference cropped from the first column and our reconstruction re-rendered

with the camera moved closer. In the last column, we show the generated yarns in a cylinder shape with the recovered parameters under a

point light condition.

Parameter Error Evaluation: We also evaluate the recovery
of parameters. As the ground truth parameters of real data are un-
available, we only plot the parameter errors of synthetic data in
Fig. 10 (a). As shown in Fig. 11, the high-dimensional joint opti-
mization has a very unsmooth convergence. Several local minima
can be observed at around the 20th and 55th iterations; neverthe-
less, after the 55th iteration, most parameters come to convergence.
The notable turning points are largely related to the matching of
pattern P, which greatly affects the distribution of appearance in
the image space. For example, in the case of synthetic data 1 (blue
curve), the error curve of the pattern shows a slight increase from
the 25th to 55th iterations, which correlates to many other param-
eters such as mr, AB, SB

e , and SB
a . After the pattern P converges to

the global optimum, most parameters reach it as well. This shows
that our proposed joint optimization can, to a certain extent, mit-
igate the optimization challenges arising from ambiguity between
discrete and continuous parameters. Note that the parameter from
pre-estimation calculates the initial error.

7.2 Spatially Varying Color

Our method can support spatially varying colors as well. In this
experiment, we replace the body reflection component of warp and
weft (RB

e and RB
a ) with a texture map instead of a single color. The

initial state of the texture map is set to a matrix initialized with ones
by default. The results are shown in Fig. 12. The reference images

© 2025 The Author(s).
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Figure 11: The parameter error plot of our synthetic data in Fig. 10 (a).
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Figure 12: Our recovery of woven fabrics with spatially varying color and the PSNR to reflect the visual quality of recovery results.

are from public sources‡. Note that as the texture map covers the
noise and irregularities as part of the spatially varying color, the
post-estimation step has less improvement in this case.

7.3 Customized Pattern

Besides, our method also has no limit to the types of weave patterns
because we explicitly model yarn curves to constitute a pattern.
Combining simulated annealing, our method can recover complex
customized patterns along with appearance, even those that do not
exist in the real world, without any priors or assumptions, and still
reach global optima. This advantage allows users to customize the

‡ The left three columns are from https://tapadesi.com/, which
are also captured by a personal mobile phone. The right two columns are
from https://www.oldworlddesigns.com/

fabric by capturing any image with a mobile phone, while previous
work [WCZ*19; JWH*22; TLH*24] cannot. In this experiment, as
the reference has no features of woven fabrics (wefts and warps)
and has never been learned by the network, we bypassed the prepa-
ration and pre-estimation steps and directly joint-optimized it from
a default initialization, which still converged while taking more it-
erations. The results are shown in Fig. 16, and the joint optimization
animation is in the supplementary materials.

7.4 Comparison with Previous Works

Our framework’s capabilities have been benchmarked against two
previous works in the field. It is important to acknowledge that,
to the best of our knowledge, there is no prior end-to-end pipeline
that matches all of the pattern, geometry, and appearance aspects

© 2025 The Author(s).
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Reference Ours [WCZ*19]

PSNR / MSE: 111555...666888///666...111777×111000−2 15.03/7.66×10−2

PSNR / MSE: 111888...777666///222...444444×111000−2 18.38/3.26×10−2

PSNR / MSE: 111444...333111///555...555444×111000−2 13.77/9.26×10−2

Figure 13: The comparison of our method with [WCZ*19], which

recovers the geometry but manually tweaks the yarn layout using

a yarn texture model, while ours recovers pattern, geometry, and

appearance without any manual intervention.

of a captured fabric image. For a fair comparison, we adapted our
pipeline to focus on aspects optimized by these earlier methods.

In our comparison with [JWH*22], which assumes weave pat-
terns only among twill, plain, or satin using a surface-based shading
model, we matched their conditions by fixing the geometry align-
ment and focusing on appearance parameters. As shown in Fig. 14,
our results demonstrate a reasonable match with the reference and
[JWH*22], reflected both qualitatively and quantitatively. The third
row has slightly worse quantitative results compared to [JWH*22],
because our advantage lies in the recovery of yarn-level details,
but the input reference is taken at a distance without clear yarn
details. However, in the overall view, our results are still compara-
ble. Besides, unlike their model, which only relies on the network
to estimate the pattern and is suitable mainly for distant render-
ings, our method can optimize patterns for close-up views, offering
high-fidelity details. Moreover, our adaptive and fully procedural
approach contrasts with their training requirement for neural net-
works, which takes 11 hours, yet is still limited by datasets.

Additionally, we compared our results with [WCZ*19], as
shown in Fig. 13, who estimated geometry by tracking fibers and
used a yarn texture model for shading, which lacks transmission.
Our model outperforms this by using a specific cloth shading model
and explicitly defining yarn curves, resulting in a more detailed ap-
pearance compared to their method. While their system requires
micro-images, our model is adaptable to any close-up images where
yarns are visible. Our method is more comprehensive, completing
the process automatically without any manual adjustments needed,
as opposed to [WCZ*19]’s method with manual intervention by
an expert user to adjust the yarn layout. Given these irregular and

Reference Ours [JWH*22]

PSNR / MSE: 222888...999777///333...333999×111000−3 24.96/1.94×10−2

PSNR / MSE: 27.61/222...777000×111000−3 222777...888444/2.71×10−3

PSNR / MSE: 26.70/4.11×10−3 222777...999999///222...333111×111000−3

Figure 14: The comparison of our method with [JWH*22], which

is limited to five given patterns, while ours includes pattern estima-

tion in the pipeline. Our yarn-based method can achieve compa-

rable results both qualitatively and quantitatively to their surface-

based method, even given relatively blurry far-view input photos.

For the first row, please zoom in to compare the diagonal details.

fuzzy inputs, even though previous work explicitly traces the fibers,
our method still achieves better quantitative results.

In these two comparisons, there is no source code available; thus,
we can only use the images from their paper. Besides, we do not
have the ground truth light and camera settings for their captured
image, while they do, therefore, we can only set up the light source
according to their report to simulate their light condition as much
as possible.

7.5 Ablation Study

Our ablation study, as depicted in Fig. 15, examines the three steps
of our pipeline. First, Fig. 15 (b) highlights the need for our pre-
estimation step to serve as better initialization. This step involves
initializing the optimization process with a rough estimation of the
pattern and color, as opposed to the random initialization used in
general joint optimization. We find that sometimes joint optimiza-
tion without pre-estimation can eventually approach an accurate ap-
pearance from a higher initial loss (orange line in the second row),
but is significantly slower with the risk of getting trapped in local
minima. Our pre-estimation method, although not always perfectly
precise, ensures faster convergence and consistent alignment with
the global minima.

Second, it examines the difference in optimization approaches.
A separate optimization is commonly used in the previous work
[SZK15; GHCG17; WCZ*19; JWH*22], which firstly analyzes
patterns, and fixes them in the following optimization for the re-
maining parameters, like the reflectance component. This method

© 2025 The Author(s).
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(a) Reference (b) W/o pre-est (c) W/o joint-opt (d) W/o post-est (e) Our full-pipeline (f) Loss plot

S
yn

th
et

ic

MSE: 1.33×10−1 1.71×10−1 5.80×10−2 4.02×10−3

R
ea

l

MSE: 5.71×10−2 1.06×10−1 3.78×10−2 3.77×10−2

Figure 15: Ablation study of our pipeline; (b) refers to the results without pre-estimation described in § 5; (c) illustrates a naive combination

strategy of prior works, first estimating pattern and then estimating appearance parameters with pattern fixed. (d) demonstrates the results

without post-estimation described in § 6.3. Then, (e) shows the results of our full pipeline. (f) plots the loss of (b), (c), and (e) in corresponding

colors. Note that the loss value corresponds to the images of the minimum pattern during optimization instead of the tiled results in (b)-(e).

often falls short, especially in terms of accurately aligning the
weave pattern, as shown in the last row of Fig. 15 (c). The cor-
responding loss plot (blue line) shows that even a separately pre-
estimated pattern provides a lower initial loss, but not jointly being
optimized in the following step limits its optimal convergence.

Last, the post-estimation of noise provides more sense of reality,
especially when recovering fuzzy woven fabric with a close-up cap-
ture as demonstrated in Fig. 8. Note that the post-estimation does
not have a corresponding loss plot.

Init Ours Reference

Figure 16: Matching a PG logo. The joint optimization starts from

a default initialization. Even though the optimized pattern does not

exist in the real world, as the warps without interlacing tension

cannot hold, it still converged to match the reference.

Honeycomb Leno

Figure 17: Examples of Honeycomb and Leno weave§.

8 Conclusion and Discussions

In this study, we introduced an inverse rendering framework that
enhances digital replication of woven fabrics. Our method esti-
mates pattern, geometry, and appearance parameters from a single

close-up image, integrating discrete and continuous parameter op-
timization. The core of our approach lies in the explicit modeling of
yarn geometries using B-spline curves and the ply and fiber details
shaded by a yarn-based shading model. The joint optimization of
discrete and continuous parameters in our system, executed through
a combination of simulated annealing and differentiable rendering,
represents a novel methodology in the area of inverse rendering.
This framework has demonstrated its effectiveness in accurately
replicating fabrics with various weave patterns and multiple plies,
showcasing an improvement over existing methods.

However, our method still faces challenges with certain real-
world samples. Specifically, our approach does not perform opti-
mally when dealing with images that are extremely fuzzy due to
clutter from flyaways or excessive irregularities, including sharp
highlights, extensive occlusions, and severe capture distortion. Be-
sides, our model assumes that the warps and wefts are grid-like
straight, and does not perform optimally for irregular yarn layout,
an example is shown in Fig. 13; due to the irregular yarn layout,
even though our results slightly perform better than manual de-
termination, the PSNRs are still relatively low. In addition, some
non-grid patterns where wefts are not orthogonal to warps, such as
Honeycomb weave and Leno weave, will also require special rules
to define the yarn layout as shown in Fig. 17. These could be areas
for future exploration and improvement by a better curve optimiza-
tion approach and a more advanced shading model.

Our current implementation of the forward shading model does
not consider spatially varying parameters, like yarn radius, ply twist
angle, and roughness, which could be an interesting direction to
extend in the future. Additionally, as the forward shading model is
based on the yarn level, it struggles with images captured from a far
distance where the yarns are not explicitly visible. For slight irreg-
ularities, our post-estimation is limited in 2D space. In the future,
we could extend it to 3D Gaussians to represent flyaway fibers.

§ The left image is from https://plainweave.net/2021/02/

07/honeycomb-by-any-other-name-is-just-as-sweet/

and the right image is from https://www.crafthub.eu/

material/leno-weave-with-multicolor-wool/.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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A Explicit yarn geometry generation for our synthetic

pattern

As spline curves define the yarn, we generate 3D control points of
wefts and warps ce, ca to represent the smallest pattern, given a
binary matrix P, the radius of weft and warp re, ra, and the heights
h at the crossover.

ALGORITHM 1: Explicit yarn geometry generation

Input: P,re,ra,h
Output: ce,ca

1 ce,ca← [];
2 ne,na← P.shape;
3 ye← [−(ne−1) · ra,(ne−1) · ra];
4 x′e← arange[0.5,ne,1];
5 xe← hstack[ f lip(−x′e) · ra,x

′
e · ra];

6 xa← [−(na−1) · re,(na−1) · re];
7 y′a← arange[0.5,ne,1];
8 ya← hstack[ f lip(−y′a) · re,y

′
a · re];

9 for i← 0 to ne do

10 c← ones(2 ·na,3);
11 c[:,0]← xe;
12 c[:,1]← ye[i];
13 c[:,2]← Gauss(P[i]) ·h;
14 ce.append(c);
15 end

16 for i← 0 to na do

17 c← ones(2 ·ne,3);
18 c[:,0]← xa[i];
19 c[:,1]← ya;

20 c[:,2]← Gauss(1−PT [i]) ·h;
21 ca.append(c);
22 end

23 return ce,ca;

An exmaple of generated control points for a 5×5 satin pattern
is shown in Fig. 18.
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Figure 18: An exmaple of generated control points for a 5×5 satin

pattern.
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