

Topology Feedback Quiz, week 5: Hausdorffness and compactness

Open books. 10–15 minutes. Not for credit. To be marked in class.

Question 1 \clubsuit The closed bounded interval [10, 20] in \mathbb{R} is:			Felix Hausdorff (1868–1942) a founder of Topology
$\bigcirc {\rm Hausdorff\ compact}$	O Hausd. non-comp.	O non-Haus. comp.	O non-H. non-comp.
The half-open interval [0,	1) in \mathbb{R} is		
$\bigcirc {\rm Hausdorff\ compact}$	O Hausd. non-comp.	O non-Haus. comp.	O non-H. non-comp.
The union $[0, 1/3] \cup [2/3,$	1] is		
$\bigcirc {\rm Hausdorff\ compact}$	O Hausd. non-comp.	\bigcirc non-Haus. comp.	O non-H. non-comp.
The set $\bigcup_{n=1}^{\infty} \left[\frac{1}{2n+1}, \frac{1}{2n}\right]$ is			
O Hausdorff compact	O Hausd. non-comp.	O non-Haus. comp.	O non-H. non-comp.
The set $\{0\} \cup \bigcup_{n=1}^{\infty} [\frac{1}{2n+1}, \frac{1}{2n}]$ is			
$\bigcirc {\rm Hausdorff\ compact}$	O Hausd. non-comp.	O non-Haus. comp.	O non-H. non-comp.
${\mathbb R}$ with cofinite topology i	s		
$\bigcirc {\rm Hausdorff\ compact}$	O Hausd. non-comp.	\bigcirc non-Haus. comp.	O non-H. non-comp.
${\mathbb R}$ with antidiscrete topolo	ogy is		
$\bigcirc {\rm Hausdorff\ compact}$	O Hausd. non-comp.	\bigcirc non-Haus. comp.	O non-H. non-comp.

Question 2 Suppose T_{weak} , T_{strong} are topologies on a set X such that T_{strong} is stronger than T_{weak} . What must be true?

 $\bigcirc \text{ the function } id_X: (X, T_{strong}) \to (X, T_{weak}) \text{ is continuous }$

 ${igcup}$ the function $id_X:(X,T_{strong})\rightarrow (X,T_{weak})$ is a homeomorphism

 $\int T_{weak}$ is Hausdorff implies T_{strong} is Hausdorff

 $\int T_{strong}$ is compact implies T_{weak} is compact