

The set $\{0\} \cup \bigcup_{n=1}^{\infty} [\frac{1}{2n+1}, \frac{1}{2n}]$ is

Hausdorff compact () Hausd. non-comp. () non-Haus. comp. () non-H. non-comp.

Explanation:

A closed subset of a compact is compact. The given set X is closed in the compact [0, 1]. (Note that, unlike in the previous example, $0 \in X$.) Indeed, $\mathbb{R} \setminus X = (-\infty, 0) \cup$ $\bigcup_{n=1}^{\infty}(\frac{1}{2n+2},\frac{1}{2n+1})\cup(\frac{1}{2},+\infty)$ is open as a union of open intervals.

ℝ with cofinite topology is

Hausdorff compact \bigcap Hausd. non-comp. non-Haus. comp. \bigcap non-H. non-comp.

Explanation:

A **cofinite topology** on \mathbb{R} is **not Hausdorff** because two non-empty open sets U, V cannot be disjoint.

Indeed, $\mathbb{R}\setminus U$ and $\mathbb{R}\setminus V$ must be finite; by the De Morgan laws, $\mathbb{R}\setminus (U\cap V) = \mathbb{R}\setminus U\cup \mathbb{R}\setminus V$.

This set is finite and so cannot be ℝ, meaning that $U \cap V$ cannot be empty. *[Same proof as Example 11.6 in* [Sutherland\]](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631)

We show that the **cofinite topology** is **compact.** Let \mathcal{C} be an open cover of $(\mathbb{R}, \text{cofinite})$, and pick a non-empty set $U \in \mathcal{C}$. Since U is open, by definition of cofinite topology

$$
U=\mathbb{R}\smallsetminus\{x_1,x_2,\ldots,x_n\}
$$

for some finite subset $\{x_1, x_2, ..., x_n\}$ of ℝ. Since $\mathcal C$ covers ℝ, in particular $\mathcal C$ must cover each of the x_i , so there are sets $V_1, \ldots, V_n \in \mathcal{C}$ such that $V_i \ni x_i$ for all i. Then $U \cup V_1 \cup \cdots \cup V_n$ contains U and the points x_1, \ldots, x_n , hence is the whole of ℝ. Thus,

 U, V_1, \ldots, V_n

is a finite subcover of C. Compactness is proved. [*Same as Example 13.8 in* [Sutherland\]](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631)

ℝ with antidiscrete topology is

Hausdorff compact () Hausd. non-comp. non-Haus. comp. () non-H. non-comp.

Explanation:

You will see in question 2 below that

a topology is non-Hausdorff \Rightarrow all weaker topologies are also non-Hausdorff; a topology is compact \Rightarrow all weaker topologies are also compact.

Since (ℝ, cofinite) is non-Hausdorff compact and the antidiscrete topology is weaker than cofinite, we conclude that $(\mathbb{R}, \text{antidiscrete})$ is also non-Hausdorff compact.

Question 2 \bullet Suppose T_{weak} , T_{strong} are topologies on a set X such that T_{strong} is stronger than T_{weak} . What must be true?

the function $id_X : (X, T_{strong}) \rightarrow (X, T_{weak})$ is continuous

Explanation:

Let U be open in T_{weak} . Note that $id_X^{-1}(U) = U$ and that U is open in T_{strong} : indeed, everything open in T_{weak} is open in T_{strong} . This proves that the preimage of any open set is open, so the function id_X is continuous.

) the function $id_X : (X, T_{strong}) \rightarrow (X, T_{weak})$ is a homeomorphism

Explanation:

No, the inverse function $id_X^{-1}: (X, T_{weak}) \to (X, T_{strong})$ may not be continuous: if T_{strong} is strictly stronger, then there is $V \subset X$ such that V is open in T_{strong} but V (which is its own preimage) is not open in $\mathcal{T}_{weak}.$

 T_{strong} is compact implies T_{weak} is compact

Explanation:

By the first part of the question, (X, T_{weak}) is a continuous image of (X, T_{strong}) , and **a continuous image of a compact is compact.** [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) *Exercise 13.5*]