Topology Feedback Quiz, week 5: Hausdorffness and compactness Open books. 10–15 minutes. Not for credit. To be marked in class.			
Convention: \mathbb{R} denotes the Euclidean (metric) space unless another topology is given. Metric topology is Hausdorff. A subspace of a Hausdorff space is Hausdorff so all subspaces of \mathbb{R} are Hausdorff — we cancel all non-Hausdorff options in the first 5 cases below. <u>non-Hausdorff</u>			
Question 1 \clubsuit The closed bounded interval [10, 20] in \mathbb{R} is:			
Hausdorff compact	Hausd. non-comp.	O non-Haus. comp.	O non-H. non-comp.
Explanation:			
By the Heine-Borel Lemma, $[0, 1]$ is compact. Every closed bounded interval $[a, b]$ with $a < b$ is homeomorphic to $[0, 1]$: e.g., the linear function $h: [0, 1] \rightarrow [a, b]$, $h(x) = a + (b - a)x$, is a homeomorphism. Compactness is a topological property, so every closed bounded interval is compact.			
The half-open interval $[0,1)$ in	n \mathbb{R} is		
O Hausdorff compact	Hausd. non-comp.	O non-Haus. comp.	O non-H. non-comp.
Explanation:			
In a Hausdorff space, a compact is closed. $[0,1)$ is not closed in \mathbb{R} so not compact.			
The union $[0, 1/3] \cup [2/3, 1]$ is			
Hausdorff compact	Hausd. non-comp.	O non-Haus. comp.	O non-H. non-comp.
Explanation:			
A closed subset of a c	compact is compact.	$[0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ is closed in	the compact $[0, 1]$.
The set $\bigcup_{n=1}^{\infty} \left[\frac{1}{2n+1}, \frac{1}{2n}\right]$ is			
O Hausdorff compact	Hausd. non-comp.	O non-Haus. comp.	O non-H. non-comp.
Explanation:			
In a Hausdorff space, a compact is closed. The set $X = \bigcup_{n=1}^{\infty} [\frac{1}{2n+1}, \frac{1}{2n}]$ is not closed in \mathbb{R} because $\mathbb{R} \setminus X$ is not open. Indeed, $0 \in \mathbb{R} \setminus X$, yet no open interval $B_{\varepsilon}(0) = (-\varepsilon, \varepsilon)$ is contained in $\mathbb{R} \setminus X$: this interval contains $\frac{1}{2n}$ where $\frac{1}{2n} < \varepsilon$, and $\frac{1}{2n} \in X$.			

The set $\{0\} \cup \bigcup_{n=1}^{\infty} \left[\frac{1}{2n+1}, \frac{1}{2n}\right]$ is

Hausd. non-comp.

non-H. non-comp.

Explanation:

A closed subset of a compact is compact. The given set X is closed in the compact [0,1]. (Note that, unlike in the previous example, $0 \in X$.) Indeed, $\mathbb{R} \setminus X = (-\infty, 0) \cup \bigcup_{n=1}^{\infty} (\frac{1}{2n+2}, \frac{1}{2n+1}) \cup (\frac{1}{2}, +\infty)$ is open as a union of open intervals.

 \mathbbm{R} with cofinite topology is

Hausdorff compact O Hausd. non-comp. non-Haus. comp. non-H. non-comp.

Explanation:

A cofinite topology on \mathbb{R} is not Hausdorff because two non-empty open sets U, V cannot be disjoint.

Indeed, $\mathbb{R} \setminus U$ and $\mathbb{R} \setminus V$ must be finite; by the De Morgan laws, $\mathbb{R} \setminus (U \cap V) = \mathbb{R} \setminus U \cup \mathbb{R} \setminus V$.

This set is finite and so cannot be \mathbb{R} , meaning that $U \cap V$ cannot be empty. [Same proof as Example 11.6 in Sutherland]

We show that the **cofinite topology** is **compact.** Let \mathcal{C} be an open cover of (\mathbb{R} , cofinite), and pick a non-empty set $U \in \mathcal{C}$. Since U is open, by definition of cofinite topology

$$U = \mathbb{R} \smallsetminus \{x_1, x_2, \dots, x_n\}$$

for some finite subset $\{x_1, x_2, \ldots, x_n\}$ of \mathbb{R} . Since \mathcal{C} covers \mathbb{R} , in particular \mathcal{C} must cover each of the x_i , so there are sets $V_1, \ldots, V_n \in \mathcal{C}$ such that $V_i \ni x_i$ for all i. Then $U \cup V_1 \cup \cdots \cup V_n$ contains U and the points x_1, \ldots, x_n , hence is the whole of \mathbb{R} . Thus,

$$U, V_1, \ldots, V_n$$

is a finite subcover of \mathcal{C} . Compactness is proved. [Same as Example 13.8 in Sutherland]

 $\mathbb R$ with antidiscrete topology is

Hausdorff compact

Hausd. non-comp.

non-H. non-comp.

Explanation:

You will see in question 2 below that

a topology is non-Hausdorff \Rightarrow all weaker topologies are also non-Hausdorff; a topology is compact \Rightarrow all weaker topologies are also compact.

Since $(\mathbb{R}, \text{ cofinite})$ is non-Hausdorff compact and the antidiscrete topology is weaker than cofinite, we conclude that $(\mathbb{R}, \text{ antidiscrete})$ is also non-Hausdorff compact.

Question 2 Suppose T_{weak} , T_{strong} are topologies on a set X such that T_{strong} is stronger than T_{weak} . What must be true?

the function $id_X: (X, T_{strong}) \rightarrow (X, T_{weak})$ is continuous

Explanation:

Let U be open in T_{weak} . Note that $id_X^{-1}(U) = U$ and that U is open in T_{strong} : indeed, everything open in T_{weak} is open in T_{strong} . This proves that the preimage of any open set is open, so the function id_X is continuous.

) the function $id_X: (X, T_{strong}) \to (X, T_{weak})$ is a homeomorphism

Explanation:

No, the inverse function $id_X^{-1} \colon (X, T_{weak}) \to (X, T_{strong})$ may not be continuous: if T_{strong} is strictly stronger, then there is $V \subset X$ such that V is open in T_{strong} but V (which is its own preimage) is not open in T_{weak} .

 T_{weak} is Hausdorff implies T_{strong} is Hausdorff **Explanation:** This was shown in lectures.

 T_{strong} is compact implies T_{weak} is compact **Explanation:**

By the first part of the question, (X, T_{weak}) is a continuous image of (X, T_{strong}) , and a continuous image of a compact is compact. [Sutherland, Exercise 13.5]