Open books. 10–15 minutes. Not for credit. To be marked in class.

We will consider three topological spaces:

- $\mathbb{R}_{\text{antidiscrete}}$, the real line with antidiscrete topology
- \mathbb{R} , the real line with Euclidean topology (**RECALL: open set** = union of open intervals)
- $\mathbb{R}_{\text{discrete}}$, the real line with discrete topology (RECALL: <u>all</u> subsets of \mathbb{R} are open)

Question 1 \clubsuit Is the collection

$$\{(a,b):a,b\in\mathbb{R}\}$$

of all intervals a base, or at least an open cover, for each of the three spaces?

- \bigcirc base for $\mathbb{R}_{antidiscrete}$
-) open cover for $\mathbb{R}_{antidiscrete}$
- () base for \mathbb{R}

() open cover for $\mathbb R$

- \bigcirc base for $\mathbb{R}_{\text{discrete}}$
- \bigcirc open cover for $\mathbb{R}_{\text{discrete}}$

Question 3 \clubsuit Which functions on \mathbb{R}^2 are continuous? Here \mathbb{R}^2 has Euclidean topology, and (x, y) denotes a point in \mathbb{R}^2 .

$$\begin{split} & \bigcirc \ \mathbb{R}^2 \to \mathbb{R}_{\text{antidiscrete}}, \ (x,y) \mapsto x \\ & \bigcirc \ \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto x \\ & \bigcirc \ \mathbb{R}^2 \to \mathbb{R}_{\text{discrete}}, \ (x,y) \mapsto x \end{split}$$

Question $2 \clubsuit$ Is the collection

 $\{\{p\}: p \in \mathbb{R}\}$

of all **singletons** a base, or at least an open cover, for each of the three spaces?

 \bigcirc base for $\mathbb{R}_{antidiscrete}$ \bigcirc open cover for $\mathbb{R}_{antidiscrete}$ \bigcirc base for \mathbb{R} \bigcirc open cover for \mathbb{R} \bigcirc base for $\mathbb{R}_{discrete}$ \bigcirc open cover for $\mathbb{R}_{discrete}$

Question 4 Write down an example of a continuous function $f: \mathbb{R}^2 \to \mathbb{R}$ (Euclidean topology on both) and sets $A, B \subset \mathbb{R}^2$ such that:

- A is open but f(A) is not open;
- B is closed but f(B) is not closed.