Open books. 10–15 minutes. Not for credit. To be marked in class.

We will consider three topological spaces:

- $\mathbb{R}_{antidiscrete}$, the real line with antidiscrete topology (RECALL: only \emptyset and \mathbb{R} are open)
- \mathbb{R} , the real line with Euclidean topology (**RECALL: open set** = union of open intervals)
- $\mathbb{R}_{\text{discrete}}$, the real line with discrete topology (RECALL: <u>all</u> subsets of \mathbb{R} are open)

RECALL:

- An **open cover** consists of **open** sets whose union is \mathbb{R} ;
- a base is an open cover such that every open set is a union of some sets from the base.

Question 1 \clubsuit Is the collection

$$\{(a,b): a, b \in \mathbb{R}\}$$

of all intervals a base, or at least an open cover, for each of the three spaces?

base for $\mathbb{R}_{\text{antidiscrete}}$

) open cover for $\mathbb{R}_{\text{antidiscrete}}$

Explanation: the interval (a, b) is not open in $\mathbb{R}_{\text{antidiscrete}}$ so this collection is not an open cover, hence not a base.

base for \mathbb{R}

Explanation: Open intervals are the Euclidean metric balls in \mathbb{R} and form a base of the Euclidean topology by definition.

open cover for $\mathbb R$

Explanation: The open intervals are open in the Euclidean topology and cover all of \mathbb{R} .

base for $\mathbb{R}_{\text{discrete}}$

Explanation: Take the open set $\{1\}$ in $\mathbb{R}_{\text{discrete}}$. This set is **not** a union of intervals of the form (a, b) so we do not have a base.

open cover for $\mathbb{R}_{\text{discrete}}$

Explanation: The intervals are open in the discrete topology — because all sets are open — and cover all of \mathbb{R} .

Question $2 \clubsuit$ Is the collection

$$\{\{p\}: p \in \mathbb{R}\}$$

of all singletons a base, or at least an open cover, for each of the three spaces?

) base for $\mathbb{R}_{\text{antidiscrete}}$

) open cover for $\mathbb{R}_{\text{antidiscrete}}$

Explanation: A singleton set $\{p\}$ is not open in $\mathbb{R}_{\text{antidiscrete}}$ so this collection is **not** an open cover and not a base.

open cover for $\mathbb R$

Explanation: A singleton set $\{p\}$ is not open in the Euclidean topology so this collection is **not** an open cover and not a base.

base for $\mathbb{R}_{\text{discrete}}$

Explanation: An open set is just an arbitrary subset of $\mathbb{R}_{\text{discrete}}$, and surely all sets can be written as unions of singletons, so singletons form a base of the discrete topology.

open cover for $\mathbb{R}_{\text{discrete}}$

Explanation: Singletons are open in $\mathbb{R}_{\text{discrete}}$ and cover the whole of $\mathbb{R}_{\text{discrete}}$.

Question 3 \clubsuit Which functions on \mathbb{R}^2 are continuous? Here \mathbb{R}^2 has Euclidean topology, and (x, y) denotes a point in \mathbb{R}^2 .

$$\mathbb{R}^2 \to \mathbb{R}_{ ext{antidiscrete}}, \, (x,y) \mapsto x$$

Explanation: We prove that the preimage of every open set is open. There are two open sets in $\mathbb{R}_{\text{antidiscrete}}$: \emptyset and \mathbb{R} . We have $f^{-1}(\emptyset) = \emptyset$ and $f^{-1}(\mathbb{R}) = \mathbb{R}^2$. In both cases the preimage is open in \mathbb{R}^2 , so f is continuous.

$\mathbb{R}^2 \to \mathbb{R}, \, (x,y) \mapsto x$

Explanation: Since we are dealing here with a function between two metric topologies, we can use methods from Metric Spaces — for example the ε - δ definition — to show that the function is continuous.

Yet here we can also directly verify the topological definition of continuity. Indeed, the preimage of an open interval $(a, b) \subseteq \mathbb{R}$ is the "open strip" $\{(x, y) : a < x < b\}$ in \mathbb{R}^2 , and so the preimage of a union of open intervals is a union of open strips, which is open in \mathbb{R}^2 .

$\bigcap \mathbb{R}^2 \to \mathbb{R}_{\text{discrete}}, \, (x, y) \mapsto x$

Explanation: The singleton set $\{2\}$ is open in $\mathbb{R}_{\text{discrete}}$ — because all sets are open in this topology. Its preimage in \mathbb{R}^2 is the vertical line y = 2. This line is not an open set in the Euclidean plane. Therefore, the function is not continuous.

Question 4 Write down an example of a **continuous** function $f: \mathbb{R}^2 \to \mathbb{R}$ (Euclidean topology on both) and sets $A, B \subset \mathbb{R}^2$ such that:

- A is open but f(A) is not open;
- B is closed but f(B) is not closed.

The function $(x, y) \mapsto x$ will not work here, because — as one can prove — it sends open sets to open sets. We will modify this function. Let

$$f \colon \mathbb{R}^2 \to \mathbb{R}, \qquad f((x,y)) = \begin{cases} x, & \text{if } x > 0, \\ 0, & \text{if } x \le 0. \end{cases}$$

The function f is continuous: this is clear from the formula $f((x,y)) = \frac{x+|x|}{2}$.

Put $A = \mathbb{R}^2$, which is certainly open in \mathbb{R}^2 . Then $f(A) = [0, +\infty)$ is a closed half-line in \mathbb{R} . The set $[0, +\infty)$ is **not open** in \mathbb{R} .

Let $B = \{(x, \frac{1}{x}) : x > 0\}$ be the positive half of the graph of the function $\frac{1}{x}$. Then B is a closed subset of the plane, yet $f(B) = (0, +\infty)$ is a subset of \mathbb{R} which is **not** closed.

