Topology Feedback Quiz, week 1: sets and functions

Open books. 10–15 minutes. Not for credit. To be marked in class.

We work with functions $f \colon \mathbb{R} \to \mathbb{R}$.

) Yes

Recall that the image of a set $A \subseteq R$ under f is $f(A) = \{f(a) : a \in A\}$, and the preimage of a set $B \subseteq \mathbb{R}$ is $f^{-1}(B) = \{x \in \mathbb{R} : f(x) \in B\}$.

"Is it always true that..." below asks whether the statement is true for all functions $f \colon \mathbb{R} \to \mathbb{R}$ and all subsets $A, B \subseteq \mathbb{R}$.

Question 1 Is it always true that $f(A \cup B) = f(A) \cup f(B)$?) Yes () No, give a counterexample Is it always true that $f(A \cap B) = f(A) \cap f(B)$? Question 2 **()** Yes () No, give a counterexample _____ Question 3 Is it always true that $f^{-1}(A \cup B) = f(A) \cup f(B)$? corrected: $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$?) Yes () No, give a counterexample Question 4 Is it always true that $f^{-1}(A \cap B) = f(A) \cap f(B)$? corrected: $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$?) Yes () No, give a counterexample _____ Is it always true that $f(\mathbb{R} \setminus A) = \mathbb{R} \setminus f(A)$? Question 5) Yes () No, give a counterexample _____ Is it always true that $f^{-1}(\mathbb{R} \setminus A) = \mathbb{R} \setminus f^{-1}(A)$? Question 6) Yes () No, give a counterexample _____ Is it always true that if A is finite, then f(A) is finite? Question 7 () No, give a counterexample) Yes Is it always true that if A is finite, then $f^{-1}(A)$ is finite? Question 8 No, give a counterexample _____) Yes Question 9 Is it always true that if A is infinite, then f(A) is infinite?) Yes () No, give a counterexample Is it always true that if A is infinite, then $f^{-1}(A)$ is infinite? Question 10

No, give a counterexample _____

Exercise. Call a subset A of \mathbb{R} "cocountable" if $A = \emptyset$ or $\mathbb{R} \setminus A$ is finite or countably infinite. (a) Show that the collection of all cocountable subsets of \mathbb{R} is a topology on \mathbb{R} . (b) Is this topology the same as discrete topology? Antidiscrete topology? Cofinite topology? This exercise will be discussed in the week 2 tutorial.

Exercise (harder). Let

$$A = \bigcap_{n \in \mathbb{N}} \bigcup_{p \in \mathbb{Z}, \ q \in \mathbb{N}} \left(\frac{p}{q} - \frac{1}{nq}, \frac{p}{q} + \frac{1}{nq} \right).$$

Denote by \mathbb{Q} the set of all rationals. Is $\mathbb{Q} \subseteq A$? Is $\mathbb{Q} = A$? Is $A = \mathbb{R}$?

This exercise will not be discussed in class, but a solution will be made available later.