Week 9 tutorial

Exercise 9.0. An unseen exercise on gluing. Definition: let X be a top. space, Y a set (initially without a topology), $q: X \to Y$ a surjective map. The topology on Y given by

$$V\subseteq Y$$
 is open in $Y\stackrel{\mathrm{def}}{\Longleftrightarrow} q^{-1}(V)$ is open in X

is the quotient topology on Y induced by q. In this situation, q is the quotient map.

In particular, if \sim is an equivalence relation on X, take $Y:=X/\sim$ to be the set of \sim -equivalence classes, and define $q\colon X\to Y$ by q(x)=[x]. The quotient topology on X/\sim is called **the identification topology** with respect to \sim . (Idea: whenever $x'\sim x''$, we identify points x' and x'' and treat them as one point.)

Gluing topology is identification topology where \sim is such that

- some equivalence classes consist of 2 points (two points glued together);
- the rest of equivalence classes are singletons.

Theorem (universal mapping property for a quotient space). Let Y be a quotient space via the quotient map $X \stackrel{q}{\to} Y$. Given any topological space Z, there is a 1-to-1 correspondence between

- continuous maps $f: Y \to Z$;
- continuous $F: X \to Z$ such that F(x') = F(x'') in Z whenever q(x') = q(x'') in Y.

The correspondence is such that $q \circ F = f$.

CHALLENGE: construct embeddings, or at least "immersions", in \mathbb{R}^3 , of the gluing spaces given by schematic diagrams presented in class.

X = 0 X

Note CO,D is compact (HB lemma)
=> 10,D/. is also compact become
the gnoticut map (0,1) -> [0,1]/~ is
continuous (and a cont. image of compart is compart)
[01]
Compact Dijection metric => Hausday
the guotient map (0,1) => [0,1]/a 75 continuous / and a cont. image of compact, 5 continuous 1 f continuous 1 Compact Compact Gy the TIFT, fis a homeownorphise.
$F: [0,1] \rightarrow S^1 \qquad F(0) = F(1)$
$F(t) = (\cos(2\pi t), \sin(2\pi t))$
(all [0,1]/ the "abstract circle" We have embedded the abstract circle IP?
nothing else is cèrcle
We have embedded the abstract wide
th III.
Next example x's gued x' cy in der'
y linder
$X = [0,1] \times [0,1]$
Embed the space X/v in R3:
F: [0,1] ×[0,1] cont. R3
$+: [0,1] \land [0,1] \longrightarrow [\wedge]$
$F((0,y)) = F((1,y)) \forall y \in [0,1]$ $F \in bijective on X/n$
t is bijective on X/\sim

F((x,y))= (cos(271X), sin(271X),y) E.g. put cylinduz Nent: F: X -> IR3 such that F((0,y)) = F((1,y)), F((x,0)) = F((x,1)) $\left(\alpha + \cos \frac{\kappa}{2}\right)$ sing The abstract - Sin > sin 2 ... Klein bottle (see software-generated version) What is