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Week 8 tutorial

Exercise 8.0. This is an unseen exercise on closure, boundary and dense sets. Consider

the sets A = {0,1} C Rand B=R\ A=

(—o0,0) U

(0,1) U

four different topological spaces, given in the table below. Complete the table.
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Hint. You may wish to recall that

A=

the smallest closed set in X which contains A

= {z € X : all open neighbourhoods of z meet A}

dA=AN(X\A)
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Exercises — solutions
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Exercise 8.1. (a) Use the following two results,

—®» a connected component of a topological space is a connected set,

—~» if the space X has a connected dense subset then X is connected,
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&to show that each connected component of a topological space is a closed set. S
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(b) Deduce from (a) that if a topological space X has finitely many connected components,

then each connected component is both closed and open in X.
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Exercise 8.2. (a) Suppose that X is a topological space, points z,y € X are joined by a
path in X, and points y, z € X are also joined by a path in X. Show that z, z are joined

by a path in X. Pﬂ%\ j
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(b) Furthermore, show that “z ~y < x,y are Jomed by a path in X" is an equivalence

relation on X.

Equivalence classes defined by the relation ~ from (b) are called path-connected compo-
nents of X. In general, a path-connected component does not need to be open or closed

in X. Nevertheless:

(c) Show that if X is an open subset of a Euclidean space R, then each path-connected

component of X is open. Deduce that an open connected subset of R"™ is path-connected.
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