Week 4 tutorial

Exercise 4.1 (basic test of openness). Suppose that \mathcal{B} is a base of a topology on X, and call the subsets of X which are members of \mathcal{B} basic open sets.

Let A be a subset of X. Prove that the following are equivalent:

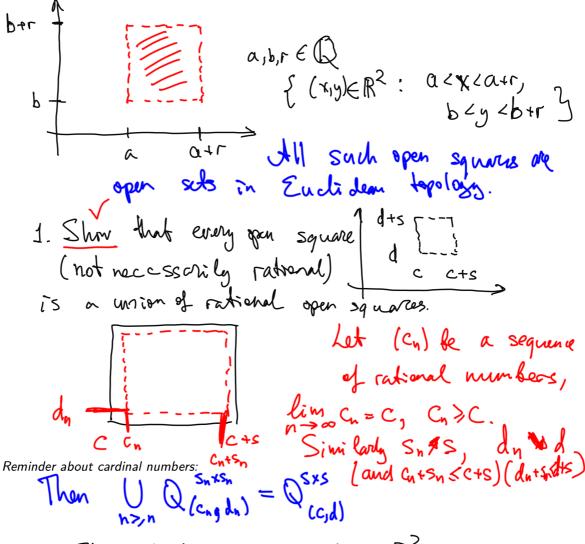
 \bigcirc A is open in X.

 \bigcirc A is a union of a collection of basic open sets.



Exercise 4.2 (the Euclidean topology has a countable base). Consider the Euclidean space \mathbb{R}^2 , and let \mathcal{Q} be the (countable) collection of all open squares in \mathbb{R}^2 where the coordinates of all four vertices are rational numbers. Prove that Q is a base for the Euclidean topology.

Deduce that the collection of all open sets in the Euclidean space \mathbb{R}^2 has cardinality \aleph (continuum), whereas the collection of all subsets of \mathbb{R}^2 has cardinality 2^{\aleph} .



2. Show that every open set in IR2 is of you squares in R2 Consider the metric on R2 known as

do $(x_1,y_1), (x_2,y_2) = \max(|x_1,y_1|, |y_1,y_2|)$ Open balls = open squares

So every $do - open set 3 a union of open squares. <math>do is Lipschitz - equivalent to so <math>do - topology = dz - topology (Eucle <math>\aleph_0$ (aleph-zero) denotes the countably infinite cardinality, e.g., the cardinality of \mathbb{N} ;

- \aleph (aleph) denotes the cardinality of continuum, e.g., the cardinality of \mathbb{R} ,
- one has $|\mathbb{R}|=\aleph=2^{\aleph_0}=|P(\mathbb{N})|>\aleph_0.$

Exercise 4.3 (subbase). Let (Y, \mathcal{T}) be a topological space. A subbase of \mathcal{T} is a collection \mathcal{S} of open sets such that finite intersections of sets from \mathcal{S} form a base of \mathcal{T} .

It is worth noting that, given any set Y (without topology) and any collection $\mathcal S$ of subsets of Y, we can construct a topology $\mathcal T_{\mathcal S}$ on X by using $\mathcal S$ as a subbase. That is, $\mathcal T_{\mathcal S}$ consists of arbitrary unions of finite intersections of members of $\mathcal S$. It is not difficult to show that this collection $\mathcal T_{\mathcal S}$ is a topology.

Prove that the collection of all **open rays** in the real line, i.e., sets of the form $(-\infty, a)$ and $(b, +\infty)$, is a subbase of the Euclidean topology.

S is a subbase $E \in U_1 \cap U_1 \cap U_2 \cap U_3 \cap U_4 \cap U_5 \cap U_6 \cap U_6$

Exercises — solutions 52

Exercise 4.4 (subbasic test of continuity). Let X, Y be topological spaces, $f: X \to Y$ be a function, and \mathcal{S} be a subbase of topology on Y. Prove that the following are equivalent:

- 1. f is continuous.
- 2. The preimage of every subbasic subset of Y is open in X. (Note that 2. means $\forall V \in \mathcal{S}$, $f^{-1}(V)$ is open in X)

Exercise 4.5. (a) Let X be a topological space and let $f: X \to \mathbb{R}$ be a function. Prove: fis continuous iff for all $a,b \in \mathbb{R},$ the sets $X_{f < a} = \{x \in X : f(x) < a\}$ and $X_{f > b} = \{x \in X : f(x) < a\}$ X: f(x) > b} are open in X.

(b) Let X be a topological space and let $f,g\colon X\to\mathbb{R}$ be continuous functions. Prove that the function $f+g\colon X\to \mathbb{R}$ is continuous. Hint: use (a).