Week 4 tutorial

Exercise 4.1 (basic test of openness). Suppose that B is a base of a topology on X, and
call the subsets of X which are members of B basic open sets.
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Let A be a subset of X. Prove that the following are equivalent:

A is open in X.
A is a union of a collection of basic open sets.

For each point x € A, there exists a basic open set U such that z € U and U C A.
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Exercise 4.2 (the Euclidean topology has a countable base). Consider the Euclidean space
R?, and let Q be the (countable) collection of all open squares in R? where the coordinates

of all four vertices are rational numbers. Prove that Q is a base for the Euclidean topology.

Deduce that the collection of all open sets in the Euclidean space R? has cardinality R
(continuum), whereas the collection of all subsets of R? has cardinality 2%.
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» N, (aleph-zero) denotes the countably infinite cardinality, e.g., the cardinality of N;
= X (aleph) denotes the cardinality of continuum, e.g., the cardinality of R,
= one has [R| = X = 2% = |P(N)| > R,.



Exercise 4.3 (subbase). Let (Y,T) be a topological space. A subbase of T is a collection

S of open sets such that finite intersections of sets from S form a base of 7.

It is worth noting that, given any set Y (without topology) and any collection § of subsets
of Y, we can construct a topology 7 ¢ on X by using § as a subbase. That is, T g consists
of arbitrary unions of finite intersections of members of §. It is not difficult to show that

this collection T g is a topology.

Prove that the collection of all open rays in the real line, i.e., sets of the form (—oo,a)
and (b, +00), is a subbase of the Euclidean topology.
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Exercises — solutions 52

Exercise 4.4 (subbasic test of continuity). Let X, Y be topological spaces, f: X — Y be

a function, and § be a subbase of topology on Y. Prove that the following are equivalent:

1. fis continuous.
2. The preimage of every subbasic subset of Y'is open in X.
%
(Note that 2. means VV € 8, f~1(V) is open in X)

Exercise 4.5. (a) Let X be a topological space and let f: X — R be a function. Prove: f
is continuous iff for all a,b € R, the sets X;_, = {zr € X: f(x) < a} and Xpop = {z €
X : f(x) > b} are open in X.

(b) Let X be a topological space and let f,g: X — R be continuous functions. Prove
that the function f + g: X — R is continuous. Hint: use (a).
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