An online PDF copy is at https://is.gd/quiztop - scan the QR code Topology Feedback Quiz, week 2: bases, continuous functions

Open books. 10–15 minutes. Not for credit. To be marked in class. SEATS

We work with functions $f : \mathbb{R} \to \mathbb{R}$.

We will consider three topological spaces:

- R_{antidiscrete}, the real line with antidiscrete topology, T= {\$\psi\$, \$\mathbb{R}\$}
 R, the real line with Euclidean topology
- $\mathbb{R}_{\mathrm{discrete}}$, the real line with discrete topology All sets are open

Question 1 & Is the collection

$$\{(a,b): a,b \in \mathbb{R}\}$$

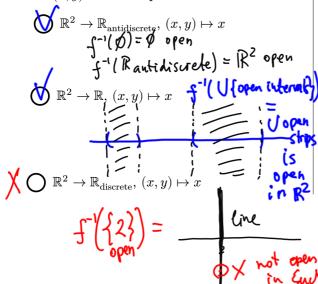
of all intervals a base, or at least an open cover, for each of the three spaces?

- $X \cap \text{base for } \mathbb{R}_{\text{antidiscrete}}$
- No open cover for Rantidiscrete (a, b) is NOT MEN

 - base for R by definition
 open cover for R (every base is an open cover!)
- \times O base for $\mathbb{R}_{discrete}$ \longrightarrow open but not a intervals
- f: X -> Y continuous => H V & Y,

 def f-1(V) is open in X

Question 3 \clubsuit Which functions on \mathbb{R}^2 are continuous? Here \mathbb{R}^2 has Euclidean topology, and (x, y) denotes a point in \mathbb{R}^2 .



Question 2 4 Is the collection

$$\{\{p\}: p \in \mathbb{R}\}$$

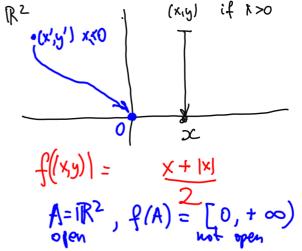
of all singletons a base, or at least an open cover, for each of the three spaces?

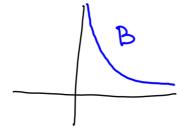
- \bigwedge base for $\mathbb{R}_{\text{antidiscrete}}$
- X O open cover for Rantidiscrete & not open!

- $X \bigcirc \text{ base for } \mathbb{R}$ $X \bigcirc \text{ open cover for } \mathbb{R}$
 - \bigvee base for $\mathbb{R}_{\text{discrete}}$
 - \bigcirc open cover for $\mathbb{R}_{\text{discrete}}$

Question 4 Write down an example of a **continuous** function $f: \mathbb{R}^2 \to \mathbb{R}$ (Euclidean topology on both) and sets $A, B \subset \mathbb{R}^2$ such that:

- A is open but f(A) is not open;
- B is closed but f(B) is not closed.





$$B = \left\{ (x, \frac{1}{x}) : x > 0 \right\}$$

$$B \text{ is closed in } \mathbb{R}^2$$

$$f(B) = (0, +\infty) \text{ which in } \mathbb{R}^2$$

Week 2

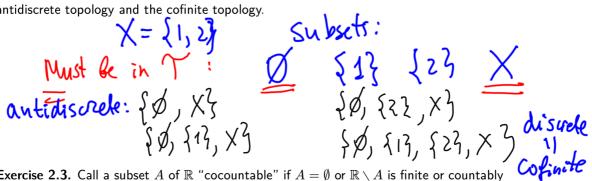
Exercises (answers at end)

Version 2024/10/04. To accessible online version of these exercises

Exercise 2.1. (a) Prove that the collection $\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{(x, +\infty) : x \in \mathbb{R}\}$ is a topology on the set \mathbb{R} of real numbers.

(b) Prove that the collection $\mathcal{N} = \{\emptyset, \mathbb{R}\} \cup \{[x, +\infty) : x \in \mathbb{R}\}$ is not a topology on the set \mathbb{R} . Which axiom(s) of topology is/are not satisfied?

Exercise 2.2. Consider the set $X = \{1, 2\}$ with two points. Describe all possible topologies $\mathcal T$ on X. Among the topologies that you describe, identify the discrete topology, the antidiscrete topology and the cofinite topology.



Exercise 2.3. Call a subset A of $\mathbb R$ "cocountable" if $A=\emptyset$ or $\mathbb R\setminus A$ is finite or countably infinite.

- (a) Show that the collection of all cocountable subsets of \mathbb{R} is a topology on \mathbb{R} .
- (b) Is this topology the same as discrete topology? Antidiscrete topology? Cofinite topology?