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Topology Feedback Quiz, week 2: bases, continuous functions
Open books. 10-15 minutes. Not for credit. To be marked in class.
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We work with functions f: R — R.

We will consider three topological spaces:
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o Ryiccrete, the real line with discrete topology A\( sets are

Question 1 & Is the collection

{(a,b) : a,b e R}

of all intervals a base, or at least an open
cover, for each of the three spaces?
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Question 3 & Which functions on R? are
continuous? Here R? has Euclidean topology,
and (z,y) denotes a point in R2.
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Question 2 & Is the collection

{{r}:peR}

of all singletons a base, or at least an open
cover, for each of the three spaces?
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Question 4 Write down an example of a
continuous function f: R?> — R (Euclidean

topology on both) and sets A, B C R? such
that:

o Ais open but f(A) is not open;

e Bis closed but f(B) is not closed.
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Week 2
Exercises (answers at end)

Version 2024/10/04 . To accessible online version of these exercises

Exercise 2.1. (a) Prove that the collection 7 = {0, R} U{(z,4+00) : z € R} is a topology

on the set R of real numbers.

(b) Prove that the collection N = {@),R} U {[z, +o0) : z € R} is not a topology on the
set R. Which axiom(s) of topology is/are not satisfied?

Exercise 2.2. Consider the set X = {1, 2} with two points. Describe all possible topologies
T on X. Among the topologies that you describe, identify the discrete topology, the
antidiscrete topology and the cofinite topology.
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Exercise 2.3. Call a subset A of R “cocountable” if A =0 or R\ A is finite or countably

infinite.
(a) Show that the collection of all cocountable subsets of R is a topology on R.
(b) Is this topology the same as discrete topology? Antidiscrete topology? Cofinite

topology?
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