An online PDF copy is at - scan the QR code

Topology Feedback Quiz, week 1: sets and functions

Open books. 10–15 minutes. Not for credit. To be marked in class.

We work with functions $f \colon \mathbb{R} \to \mathbb{R}$.

Recall that the image of a set $A \subseteq R$ under f is $f(A) = \{f(a) : a \in A\}$, and the preimage of a set $B \subseteq \mathbb{R}$ is $f^{-1}(B) = \{x \in \mathbb{R} : f(x) \in B\}$.

"Is it always true that..." below asks whether the statement is true for all functions $f: \mathbb{R} \to \mathbb{R}$ and all subsets $A, B \subseteq \mathbb{R}$.

Question 1 Is it always true that
$$f(A \cup B) = f(A) \cup f(B)$$
?

Yes \bigcap No, give a counterexample

 $f(A \cup B) = f(A) \cup f(B)$?

Question 2 Is it always true that $f(A \cap B) = f(A) \cap f(B)$? $f(A) \cup f(B)$?

 $f(A) \cup f(B) \cup f(B)$
 $f(A) \cup f(B) \cup f(B)$

