
Week 9

Exercises — solutions

Version 2024/12/03. To accessible online version of these exercises

Exercise 9.0. An unseen exercise on gluing. Definition: let 𝑋 be a top. space, 𝑌 a set
(initially without a topology), 𝑞 ∶ 𝑋 → 𝑌 a surjective map. The topology on 𝑌 given by

𝑉 ⊆ 𝑌 is open in 𝑌
def
⟺ 𝑞−1(𝑉 ) is open in 𝑋

is the quotient topology on 𝑌 induced by 𝑞. In this situation, 𝑞 is the quotient map.

In particular, if ∼ is an equivalence relation on 𝑋, take 𝑌 ∶= 𝑋/∼ to be the set of
∼-equivalence classes, and define 𝑞 ∶ 𝑋 → 𝑌 by 𝑞(𝑥) = [𝑥]. The quotient topology on
𝑋/∼ is called the identification topology with respect to ∼. (Idea: whenever 𝑥′ ∼ 𝑥″,
we identify points 𝑥′ and 𝑥″ and treat them as one point.)

Gluing topology is identification topology where ∼ is such that

• some equivalence classes consist of 2 points (two points glued together);
• the rest of equivalence classes are singletons.

Theorem (universal mapping property for a quotient space). Let 𝑌 be a quotient space
via the quotient map 𝑋

𝑞
−→ 𝑌. Given any topological space 𝑍, there is a 1-to-1 correspon-

dence between
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https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/ch9ex.html
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• continuous maps 𝑓∶ 𝑌 → 𝑍;
• continuous 𝐹∶ 𝑋 → 𝑍 such that 𝐹(𝑥′) = 𝐹(𝑥″) in 𝑍 whenever 𝑞(𝑥′) = 𝑞(𝑥″) in 𝑌.

The correspondence is such that 𝑞 ∘ 𝐹 = 𝑓.

CHALLENGE: construct embeddings, or at least “immersions”, in ℝ3, of the gluing
spaces given by schematic diagrams presented in class.

Answer to E9.0. Diagram 1:

0 1

𝑋 = [0, 1] with the points 0 and 1 glued together.

In more detail, the equivalence relation ∼ on 𝑋 = [0, 1] is defined by: 0 ∼ 1 so that
[0] = [1] = {0, 1}; other equivalence classes are singletons, i.e., [𝑥] = {𝑥} ∀𝑥 ∈ 𝑋∖{0, 1}.

0=1

Could [0, 1] with 0 and 1 glued together look like this?

Informally, if we try to bend the interval and glue together its endpoints (we need a
2-dimensional to do this!), we get something like a loop. We conjecture that 𝑋/∼ is
homeomorphic to the circle. Let us prove this.

Claim 1: If 𝑋 = [0, 1] and ∼ is the equivalence relation described above (“gluing together
0 and 1”), then the quotient space 𝑋/∼ is homeomorphic to the circle 𝑆1.

Proof: a homeomorphism 𝑋/∼ → 𝑆1 is, in particular, a continuous map. All such
continuous maps are described by the universal mapping property for a quotient space:
namely, they are the same as continuous maps 𝑓∶ 𝑋 → 𝑆1 such that 𝑓(0) = 𝑓(1).
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We view 𝑆1 as the subset {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥2 + 𝑦2 = 1}. Put 𝑓(𝑡) = (cos 2𝜋𝑡, sin 2𝜋𝑡)
so that 𝑓(0) = 𝑓(1). Note that 𝑓 has distinct values on all ∼-equivalence classes so 𝑓 is
injective on 𝑋/∼. Clearly, 𝑓 is also surjective; 𝑓 is continuous because its components,
cos 2𝜋𝑡 and sin 2𝜋𝑡, are continuous functions on [0, 1].

Thus, 𝑓∶ 𝑋/∼ → 𝑆1 is a continuous bijection. Note that:

• 𝑋 = [0, 1] is compact by the Heine-Borel lemma.
• So, 𝑋/∼ is compact as the image of 𝑋 under the (continuous) quotient map 𝑞.
• 𝑆1 is Hausdorff as it is a metric space.

By Topological Inverse Function Theorem, a continuous bijection 𝑓 from a compact to a
Hausdorff space is a homeomorphism. We have rigorously proved that the closed interval
with its ends glued together is homeomorphic to a circle.

Remark: the space [0, 1]/∼ that we have considered can be called “the abstract circle”.
We have thus embedded the abstract circle in ℝ2.

Diagram 2:

Diagram: In more detail:

(0, 𝑡) (1, 𝑡)

glued

The diagram on the left indicates (using colour) that two parallel edges of the square
𝑋 = [0, 1]× [0, 1] must be glued together. The arrows on the coloured edges, which point
in the same direction, specify which point is glued to which: namely, a point at distance
𝑡 from the bottom left corner is identified with the point at the same distance 𝑡 from the
bottom right corner. This is shown in more detail in the diagram on the right.

We try to construct the quotient space informally by bending the square and gluing the
edges in ℝ3. The figure shows the process of bending the square and gluing the opposite
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sides to obtain a cylinder. It is also easy to construct a homeomorphism from 𝑋/∼ to the
cylinder: writing the cylinder as 𝑆1 × [0, 1] ⊆ ℝ3 and put 𝑓(𝑡, 𝑢) = (cos 2𝜋𝑡, sin 2𝜋𝑡, 𝑢)
where (𝑡, 𝑢) ∈ [0, 1] × [0, 1]. We omit the proof that 𝑓 is a homeomorphism, which is
similar to Diagram 1. Thus, Diagram 2 defines a topological space 𝑋/∼ which can be
called “the abstract cylinder”, and we have just embedded this space in ℝ3.

Bending the square in ℝ3 to glue its opposite edges together and obtain a cylinder [Link
to online interactive 3D diagram]

Diagram 3:

Here we glue together the points (𝑡, 0) and (𝑡, 1) for all 𝑡 ∈ [0, 1], and glue together (0, 𝑢)
with (1, 𝑢) for all 𝑢 ∈ [0, 1], of the square 𝑋 = [0, 1]× [0, 1]. The resulting quotient space

https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/bentsquare.html
https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/bentsquare.html
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𝑋/∼ may be called a “schematic torus”: it is not difficult to show that it is homeomorphic
to 𝕋2 = 𝑆1 × 𝑆1.

Informally, the torus embedded in ℝ3 can be obtained by stretching and bending the
cylinder obtained above in order to glue the two circular edges together, see Figure.

Bending the cylinder to glue its circular edges together and obtain a torus [Link to online
interactive 3D diagram]

We will now write down an embedding 𝑓 of 𝑋/∼ in ℝ3, providing explicit formulas for the
embedding of 𝕋2 in ℝ3 described in the lectures.

Points (𝑡, 0) ∈ 𝑋 are mapped onto the circle of radius 𝑟 centred at (𝑅, 0, 0) in the 𝑥𝑧
plane: 𝑓((𝑡, 0)) = (𝑅 + 𝑟 cos 2𝜋𝑡, 0, 𝑟 sin 2𝜋𝑡).

Now, 𝑓((𝑡, 𝑢)) is defined as 𝑓((𝑡, 0)) rotated around the 𝑧 axis through the angle of 2𝜋𝑢.

Recall that the matrix of such rotation is Rot𝑧(2𝜋𝑢) =
⎛⎜⎜⎜
⎝

cos 2𝜋𝑢 − sin 2𝜋𝑢 0
sin 2𝜋𝑢 cos 2𝜋𝑢 0

0 0 1

⎞⎟⎟⎟
⎠

. We

thus have

𝑓((𝑡, 𝑢)) = Rot𝑧(2𝜋𝑢)𝑓((𝑡, 0))

= ((𝑅 + 𝑟 cos 2𝜋𝑡) cos 2𝜋𝑢, (𝑅 + 𝑟 cos 2𝜋𝑡) sin 2𝜋𝑢, 𝑟 sin 2𝜋𝑡).

The function 𝑓 “respects” gluing, i.e., takes the same value on (𝑡, 0) and (𝑡, 1), similarly
for (0, 𝑢) and (1, 𝑢). Hence 𝑓 gives a well-defined function 𝑋/∼ → ℝ3. As long as 𝑅 > 𝑟,

https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/bentcylinder.html
https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/bentcylinder.html
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the function 𝑓 is injective on 𝑋/∼, which is compact. Applying the Topological Inverse
Function Theorem as we did earlier, we conclude that 𝑓 is an embedding.

The image of 𝑓 is the familiar “surface of a doughnut” [Link to online interactive 3D
diagram]

Diagram 4:

Attention! The arrows tell us that on the horizontal edges, we glue together the points
(𝑡, 0) and (1 − 𝑡, 1) for all 𝑡 ∈ [0, 1]. The quotient space 𝑋/∼ is the “schematic Klein
bottle”. One can prove (which is beyond the scope of our course) that 𝑋/∼ is not
embeddable in ℝ3.

https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/doughnut.html
https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/doughnut.html
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One can construct a function 𝑓∶ 𝑋 → ℝ3 which glues together the points identified by ∼
but also some other points. The resulting continuous map 𝑋/∼ → ℝ3 is usually called
an immersion.

An explicit formula for 𝑓∶ 𝑋 → ℝ3 can be as follows: writing 𝜑 = 2𝜋𝑡, 𝜃 = 2𝜋𝑢,

𝑓(𝑡, 𝑢) = ((𝑅 + cos 𝜃
2
sin𝜑 − sin 𝜃

2
sin 2𝜑) cos 𝜃,

(𝑅 + cos 𝜃
2
sin𝜑 − sin 𝜃

2
sin 2𝜑) sin 𝜃,

sin 𝜃
2
sin𝜑 + cos 𝜃

2
sin 2𝜑).

It is easy to verify that 𝑓 respects gluing: 𝑓(0, 𝑢) = (𝑅 cos 𝜃,𝑅 sin 𝜃, 0) = 𝑓(1, 𝑢) and also
𝑓(𝑡, 0) = (𝑅 + sin𝜑, 0, sin 2𝜑) equals 𝑓(1 − 𝑡, 1) = (𝑅 − sin(2𝜋 −𝜑), 0,− sin(4𝜋 − 2𝜑)).
However, 𝑓 also glues the line 𝑡 = 1

2 to the line 𝑡 = 0 (and 𝑡 = 1). The resulting 3d
surface, a “symmetric” immersion of the Klein bottle in ℝ3, is as shown in the Figure.

[Link to online interactive 3D diagram]

References for the exercise sheet

Quotient spaces and surfaces are discussed in [Sutherland, Chapter 15], which includes proofs of
the theoretical results given above and the embedding of the torus in ℝ3 which we considered here.
The Klein bottle immersions in ℝ3 are discussed in popular topology resources (see this example).

https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/kleinbottle.html
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://plus.maths.org/content/imaging-maths-inside-klein-bottle
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The images of the “surface of a doughnut” and the “bagel-like” Klein bottle were generated by
3d plotting in SageMath computer algebra system. The SageMath code for the Klein bottle was
generated by OpenAI ChatGPT.

https://www.sagemath.org/
https://chatgpt.com
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