Week 9

Topological properties of product spaces

Version 2024/12/03 [To accessible online version of this chapter](https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/ch9.html)

The universal mapping property of the product space $X \times Y$

Any function $f: Z \to X \times Y$ must output a point of $X \times Y$ which is a pair, hence must be of the form $f(z) = (f_X(z), f_Y(z))$. Formally, the "components" of f are

$$
f_X: Z \xrightarrow{f} X \times Y \xrightarrow{p_X} X, \quad f_Y: Z \xrightarrow{f} X \times Y \xrightarrow{p_Y} Y
$$

where p_X, p_Y are the projections. The next result is called **the universal mapping property** because it describes all possible continuous functions with the codomain $X \times Y$.

Theorem 9.1: the universal mapping property.

Let X, Y, Z be topological spaces. There is a 1-to-1 correspondence between

- continuous functions $f: Z \to X \times Y$, and
- pairs of continuous functions $(f_X \colon Z \to X, f_Y \colon Z \to Y)$.

To $f\colon Z\to X\times Y$ there corresponds the pair $(f_X=p_X\circ f,f_Y=p_Y\circ f).$ Vice versa, to a pair (f_X, f_Y) there corresponds the function f defined by $f(z) = (f_X(z), f_Y(z))$. **Remark:** put simply, the Theorem says that $f: Z \to X \times Y$ is continuous if and only if the functions $f_X^{}=p_X^{}\circ f$, $f_Y^{}=p_Y^{}\circ f$ are continuous.

Proof of the Theorem. Let $f\colon Z\to X\times Y$ be a continuous function. Since p_X, p_Y are continuous by Proposition 8.1 , and a composition of continuous functions is continuous, the functions $f_X^{}=p_X^{}\circ f$, $f_Y^{}=p_Y^{}\circ f$ are continuous.

Vice versa, let pair $f_X\colon Z\to X$, $f_Y\colon Z\to Y$ be continuous functions. We need to check that the function $f = (f_X, f_Y)$ is continuous. By definition of the product topology, an arbitrary open subset of $X\times Y$ is a union $\bigcup_{\alpha\in I}U_\alpha\times V_\alpha$ of open rectangles, where, for each $\alpha \in I$, U_{α} is open in X and V_{α} is open in Y. The preimage of a union is the union of preimages, so

$$
f^{-1}(\bigcup_{\alpha \in I} U_{\alpha} \times V_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(U_{\alpha} \times V_{\alpha}).
$$

Note that $f^{-1}(U_\alpha\times V_\alpha)$ consists of $z\in Z$ such that $f_X(z)\in U_\alpha$ and $f_Y(z)\in V_\alpha.$ In other words, $f^{-1}(U_\alpha \times V_\alpha) = f_X^{-1}(U_\alpha) \cap f_Y^{-1}(V_\alpha)$ which is open in Z , because $f_X^{-1}(U_\alpha)$ and $f_Y^{-1}(V_\alpha)$ are preimages of open sets under the confinuous functions f_X, f_Y , and the intersection of two open sets is open.

Therefore, $\bigcup_{\alpha \in I} f^{-1}(U_\alpha \times V_\alpha)$ is open as a union of open sets. We have verified the definition of "continuous" for f .

It remains to note that, given $f\colon Z\to X\times Y$, taking $f_X=p_X\circ f$ and $f_Y=p_Y\circ f$ then constructing (f_X,f_Y) brings us back to the function f . Also, given the functions $f_X^{},\,f_Y^{},$ if $f = (f_X, f_Y)$ then taking $p_X \circ f$ and $p_Y \circ f$ returns us to the functions f_X and f_Y . This shows that we have two mutually inverse correspondences between functions $Z \to X \times Y$ and pairs of functions $Z \to X$, $Z \to Y$. Hence we have a bijective (1-to-1) correspondence between the two sets of functions, as claimed. \Box

Topological properties of the product space

We would like to understand how the topological properties of the product space $X \times Y$ are determined by the topological properties of the spaces X and Y . The following result helps us by showing how homeomorphic copies of the space X sit inside $X \times Y$:

Lemma 9.2: embedding of X **in** $X \times Y$.

For each $y_0 \in Y$, the subspace $X \times \{y_0\}$ of $X \times Y$ is homeomorphic to X.

Proof. Consider the embedding map $i_{y_0} \colon X \to X \times Y$, $x \to (x, y_0)$. Note that $p_X \circ i_{y_0}$ is the identity map $x\mapsto x$ of X [which is continuous,](#page--1-1) and $p_Y\circ i_{y_0}$ is the constant map $\mathrm{const}_{y_0} \colon X \to Y$, [which is continuous.](#page--1-2) Hence by the Universal Mapping Property, The-orem [9.1,](#page-0-0) i_{y_0} is a continuous map. We can restrict the codomain and consider i_{y_0} as a continuous map $X \to X \times \{y_0\}.$

The projection $p_X \colon X \times Y \to X$ is continuous by Proposition [8.1,](#page--1-0) so its restriction $p_X|_{X\times \{y_0\}}$ is continuous.

The composition $x\mapsto (x,y_0)\mapsto x$ shows that $p_X|_{X\times \{y_0\}}\circ i_{y_0}=\mathrm{id}_X$. Also, the composition $(x,y_0)\mapsto x\mapsto (x,y_0)$ shows that $i_{y_0}\circ p_X|_{X\times \{y_0\}}= \mathrm{id}_{X\times \{y_0\}}.$ Therefore, i_{y_0} and $p_X|_{X \times \{y_0\}}$ are two mutually inverse continuous maps. We have verified the definition of "homeomorphism" for $i_{y_0} \colon X \to X \times \{y_0\}.$ \Box

Remark: in the same way, if $x_0 \in X$, the subspace $\{x_0\} \times Y$ of $X \times Y$ is homeomorphic to Y .

Proposition 9.3: Hausdorfness and connectedness of the product.

If X, Y are non-empty topological spaces, then

(a) X and Y are both Hausdorff $\iff X \times Y$ is Hausdorff;

(b) X and Y are both connected $\iff X \times Y$ is connected.

Figure 9.1: if X, Y are connected, any two points of $X \times Y$ are joined by a connected set

Proof (not given in class). (a) \Rightarrow : assume X, Y are Hausdorff, and let $(x, y) \neq (x', y')$ be two distinct points of $X \times Y$. Then either $x \neq x'$, or $y \neq y'$, or both.

If $x \neq x'$, take U, U' to be open sets in X such that $x \in U$, $x' \in U'$ and $U \cap U' = \emptyset$. Then the points (x, y) and (x', y') lie in disjoint open cylinder sets $U \times Y$ and $U' \times Y$. If $y \neq y'$, a similar argument leads to disjoint open cylinders $X \times V$ and $X \times V'$. We have thus verified the definition of "Hausdorff" for $X \times Y$.

 \Leftarrow : assume $X\!\times\!Y$ is Hausdorff. Pick a point y_0 in the non-empty space Y . Subspaces of a Hausdorff space are Hausdorff (Proposition [3.3\)](#page--1-3), so $X \times \{y_0\}$ is Hausdorff; it is homeomor-phic to X by Lemma [9.2,](#page-2-0) and Hausdorffness is a topological property (Proposition [3.1\)](#page--1-4), so X is Hausdorff. Similarly, Y is Hausdorff.

(b) \Rightarrow : assume X, Y are connected. Any two points (x, y) and (x', y') of $X \times Y$ lie in the set $(X \times \{y\}) \cup (\{x'\} \times Y)$, see Figure [9.1.](#page-3-0) Connectedness is a topological property, so $X \times \{y\}$, which is homeomorphic to X by Lemma [9.2,](#page-2-0) is connected. Similarly, $\{x'\}\times Y$ is connected. The union of two connected sets, which have a common point, is connected by Lemma [7.3,](#page--1-5) so (x, y) and (x', y') lie in the same connected component of $X \times Y$. Since the two points were arbitrary, $X \times Y$ has only one connected component, i.e., is connected.

 \Leftarrow : if $X \times Y$ is connected, then $X = p_X(X \times Y)$ and $Y = p_Y(X \times Y)$ are connected, because $p_X^{},\ p_Y^{}$ are continuous (Proposition $8.1)$ and a continuous image of a connected space is connected (Theorem [7.1\)](#page--1-6). \Box

The baby Tychonoff theorem about compactness of $X \times Y$

We will now deal with compactness of $X \times Y$ which is more intricate than Hausdorfness and connectedness. Since the product topology on $X \times Y$ is given by its base \mathcal{B} , we first prove a lemma which allows us to check compactness using only covers by sets from \mathcal{B} .

Lemma 9.4: a "basic compact" is a compact.

Let $\mathscr B$ be a base of topology on a space X . Suppose that every basic cover of X (i.e., a cover by sets from $\mathscr B)$ has a finite subcover. Then X is compact.

Proof. By definition of a base, every open set $U \subseteq X$ can be written as a union of basic open sets (i.e., members of \mathcal{B}). Call these basic open sets "the children" of U.

Suppose that $\mathscr C$ is a cover of X by open sets U_α , $\alpha \in I$. Consider the collection $\mathscr C_1 = \{$ all children of all sets from \mathscr{C} . Each set in \mathscr{C} is the union of its children, so $\bigcup \mathscr{C}_1 = \bigcup \mathscr{C} = X$.

Thus, \mathscr{C}_1 is a basic open cover of X . Then by assumption, a finite cover V_1,\ldots,V_n can be chosen from $\mathscr{C}_1\colon\ V_1\cup\cdots\cup V_n=X$. The sets V_1,\ldots,V_n may not lie in \mathscr{C} , but their "parents" do. Consider the finite subcollection of $\mathscr C$ given by

a parent of V_1 , a parent of V_2 , ..., a parent of $V_n.$

Here "a parent" means an arbitrary choice of parent if V_i has more than one parent. Since $V_i \subseteq$ (a parent of $V_i)$, the union of the n "parents" is also $X.$ Given any open cover $\mathscr C$ of X, we constructed a finite subcover, thus verifying the definition of "compact" for X . \Box

Theorem 9.5: the baby Tychonoff theorem.

If X, Y are non-empty spaces, both X and Y are compact $\iff X \times Y$ is compact.

Proof. $\Leftarrow: X \times Y$ is compact, so $X = p_X(X \times Y)$ is compact by Theorem [4.2](#page--1-7) (continuous image of compact) as p_X is continuous by Proposition [8.1.](#page--1-0) Similarly, Y is compact.

Figure 9.2: if finitely many open rectangles cover $X \times \{y_0\}$, they cover an open cylinder $X \times V(y_0)$

 \Rightarrow : let X, Y be compact. We assume that $\mathscr C$ is a cover of $X \times Y$ by open rectangles and show that $\mathscr C$ has a finite subcover. Since, by definition, open rectangles form a base of the topology on $X \times Y$, Lemma [9.4](#page-4-0) will imply that $X \times Y$ is compact.

For each $y_0 \in Y$, $X \times \{y_0\}$ is homeomorphic to X (Lemma [9.2\)](#page-2-0), hence $X \times \{y_0\}$ is a **compact set,** which by compactness criterion [4.1](#page--1-8) is covered by a finite subcollection of open rectangles $U_1\times V_1,\ldots,U_n\times V_n$ from $\mathscr C.$ We may assume that each $U_i\times V_i$ intersects $X \times \{y_0\}$ (otherwise delete it from the finite cover), so $V_i \ni y_0$ for all $i=1,\ldots,n.$

Define the open neighbourhood $V(y_0)$ to be $V_1\cap \cdots \cap V_n$. Then each open rectangle $U_i \times V_i$ contains $U_i \times V(y_0)$, and so the open rectangles $U_1 \times V_1, ..., U_n \times V_n$, which form the finite cover of $X \times \{y_0\}$, also cover the open cylinder $X \times V(y_0)$, see Figure [9.2.](#page-5-0)

We have thus constructed an open neighbourhood $V(y_0)$ for \bold{e} very point y_0 of Y . We now use **compactness of** Y to choose a finite subcover of Y by these neighbourhoods: say, $V(y_1), \ldots, V(y_m)$ such that $V(y_1) \cup \cdots \cup V(y_m) = Y.$

Then the union of the cylinders $X \times V(y_1), \dots, X \times V(y_m)$ is $X \times Y$. Also, by the above construction, each cylinder $X \times V(y_j)$ is covered by a finite subcollection of $\mathscr C$. The union of these m finite subcollections is a **finite subcover, chosen from** \mathscr{C} , for the whole of $X \times Y$, as required. \Box

The following corollary is now easily obtained by induction. We understand the n -fold product $X_1\times X_2\times \cdots \times X_n$ as the iterated product $(((X_1\times X_2)\times X_3)\times \dots)\times X_n.$

Corollary: the product of finitely many compact spaces is compact.

If X_1, \ldots, X_n are compact topological spaces, then the product space $X_1 \times \cdots \times X_n$ is compact. \Box

The Heine-Borel Theorem

The baby Tychonoff theorem is now used to extend the Heine-Borel Lemma, Theorem [5.2,](#page--1-9) which says that $[0, 1]$ is compact, to a result which describes all compact sets in Euclidean spaces \mathbb{R}^n .

Theorem 9.6: The Heine-Borel Theorem.

In the Euclidean space \mathbb{R}^n , a set K is compact iff K is closed and bounded.

Proof. The "only if" part is immediate by Proposition 5.1 : if K is a compact set in any metric space, then K is closed and bounded.

To prove the "if" part, assume that K is a closed bounded subset of \mathbb{R}^n . Any bounded set is a subset of an n -dimensional cube $\{(x_1,\dots,x_n)\in \mathbb{R}^n: |x_i|\leq M\ \forall i=1,\dots,n\},$ for some $M > 0$. This cube of side length $2M$ is the product space $[-M, M] \times \cdots \times [-M, M] =$ $[-M, M]^n$.

Note that the closed bounded interval $[-M, M] \subseteq \mathbb{R}$ is homeomorphic to $[0, 1]$ (a homeomorphism is afforded, for example, by a linear function mapping $[0, 1]$ onto $[-M, M]$). By the Heine-Borel Lemma, $[0, 1]$ is compact, and so $[-M, M]$ is also compact. By baby Tychonoff theorem [9.5](#page-4-1) and its Corollary, $[-M, M]^n$ is compact.

Thus K is a closed subset of the compact $[-M, M]^n$, and so by Proposition [4.3,](#page--1-11) K is compact. \Box

The torus and its embedding in \mathbb{R}^3

The theory that we have developed so far can be used to construct embeddings of abstractly defined topological spaces in a Euclidean space. By an embedding, we mean the following:

Definition: embedding.

Let X, Y be topological spaces. An **embedding of** X in Y is a map $f: X \rightarrow Y$ such that restricting the codomain gives a homeomorphism $f\colon X\stackrel{\sim}{\to} f(X).$

In other words, an embedding means constructing inside Y a subspace homeomorphic to X . This is important in many applications.

Example: embedding of the torus in \mathbb{R}^3 **.**

Let S^1 denote the unit circle $\{(x,y)\in\mathbb{R}^2 : x^2+y^2=1\}$ in the Euclidean plane. Define the **torus** as the product space

$$
\mathbb{T}^2 = S^1 \times S^1.
$$

Show: \mathbb{T}^2 is compact. Construct an embedding of \mathbb{T}^2 in the Euclidean space \mathbb{R}^3 .

Solution: S^1 is closed and bounded in \mathbb{R}^2 , hence compact by Heine-Borel Theorem [9.6.](#page-6-0)

(There are alternative ways to show compactness of $S^1;$ for example, S^1 is the image of the map $[0,1] \to \mathbb{R}^2$, $t \mapsto (\cos 2\pi t, \sin 2\pi t)$ which is continuous; $[0,1]$ is compact, and a continuous image of a compact is compact.)

It follows that $\mathbb{T}^2 = S^1 \times S^1$ is compact by baby Tychonoff theorem [9.5.](#page-4-1)

It is not automatic that an embedding of \mathbb{T}^2 in \mathbb{R}^3 must exist: note that S^1 is a subspace of \R^2 , so \mathbb{T}^2 is naturally a subspace of $\R^2\times\R^2=\R^4$ and not $\R^3.$ Yet we can construct an **injective** function $f\colon S^1 \times S^1 \to \mathbb{R}^3$, as follows.

A point of \mathbb{T}^2 is a pair (P,Q) where P is a point on the first circle, and Q is a point on the second unit circle in $S^1\times S^1.$ It is convenient to represent the two points by their Topological properties of product spaces 120

Figure 9.3: the torus \mathbb{T}^2 is defined as the product of two circles, so a point of \mathbb{T}^2 is a pair of circle points and is represented by a pair of angles (φ, θ)

angle coordinates (φ, θ) with $\varphi, \theta \in [0, 2\pi)$, see Figure [9.3.](#page-8-0)

Fix two radii R, r such that $R > r > 0$. Informally, we will think of the first circle in $S^1 \times S^1$ (the blue circle in Figure [9.3\)](#page-8-0) as the circle of radius R in the horizontal xy plane in \mathbb{R}^3 . The torus \mathbb{T}^2 is the disjoint union

$$
\mathbb{T}^2 = \bigcup_{P \in S^1} \{P\} \times S^1,
$$

and for each P on the blue circle, we map the subset $\{P\} \times S^1$ of the torus to the red circle of radius R, centred at P and orthogonal to the blue circle. Thus, $f: S^1 \times S^1 \to \mathbb{R}^3$ is given by

$$
(\varphi,\theta)\mapsto \text{Rotate}_{z\text{-axis}}^{\varphi}\big((R,0,0)+(\cos\theta,0,\sin\theta)\big)
$$

as shown in Figure [9.4.](#page-9-0) An explicit formula for $f(\varphi, \theta)$ will be worked out in the tutorial.

Explanation why f is injective: f maps two points (φ, θ) and (φ', θ') on \mathbb{T}^2 such that $\varphi \, \neq \, \varphi'$, onto two disjoint red circles in Figure [9.4,](#page-9-0) to the f -images are distinct. The red circles are disjoint because we chose $r < R$. In the case $\varphi = \varphi'$, the two points are mapped by f onto the same red circle but to different points of the circle, as long as $\theta \neq \theta'$.

Explanation why f is continuous: the x-component f_x of f can be written as an algebraic expression in $\cos \varphi$, $\sin \varphi$, $\cos \theta$ and $\sin \theta$ (see the formula given in the tutorial). Note that $\cos \varphi$ and $\sin \varphi$ are the actual coordinates of the point on the first (blue) circle, hence they are continuous functions on \mathbb{T}^2 by Proposition [8.1.](#page--1-0) Same can be said of $\cos\theta$ and $\sin\theta$.

Figure 9.4: the image of a point $(\varphi, \theta) \in \mathbb{T}^2$ in \mathbb{R}^3 is obtained by rotating, through φ around the z axis, the point θ on the red xz circle of radius r around $(R, 0, 0)$. [\[Link to](https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/torus.html) [online interactive 3D diagram\]](https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/torus.html)

Sums and products of continuous functions are continuous (this is known to be true for metric spaces; for general topological spaces, see E4.5). Hence f_x is a continuous function from \mathbb{T}^2 to \mathbb{R} .

In the same way one shows that f_y and f_z are continuous \R -valued functions on $\mathbb{T}^2.$ Hence $f\colon\mathbb{T}^2\to\mathbb{R}^3$ is continuous by the Universal Mapping Property, Theorem [9.1.](#page-0-0)

Proof that f is an embedding: restricting the codomain of continuous injection f gives the the continuous bijection $f\colon\mathbb{T}^2\to f(\mathbb{T}^2).$ We **do not need continuity of the inverse** ${\sf map}\colon$ as ${\mathbb T}^2$ is compact and $f({\mathbb T}^2)$ is metric hence Hausdorff, by the Topological Inverse Function Theorem [4.5](#page--1-12) $f: \mathbb{T}^2 \overset{\sim}{\to} f(\mathbb{T}^2)$ is a homeomorphism. \Box

The Tychonoff theorem (not done in class, not examinable)

Baby Tychonoff theorem [9.5](#page-4-1) is a particular case of a result that we state here for completeness. The proof is beyond the scope of this course and can be found [in the literature.](#page-10-0)

Let $(X_{\alpha})_{\alpha\in I}$ be a collection of topological spaces. The topology on the Cartesian product $\prod_{\alpha\in I}X_\alpha$ is defined to have base $\mathscr B$ of sets of the form $\prod_{\alpha\in I}U_\alpha$ where (1) $U_\alpha=X_\alpha$ for all but finitely many $\alpha \in I$; (2) U_{α} is open in X_{α} for all $\alpha \in I$.

The product topology on $X \times Y$ is a particular case: (1) can be omitted if I is finite.

Theorem 9.7: the Tychonoff theorem.

Suppose the space X_{α} is not empty for all $\alpha\in I.$ Then the product space $\prod_{\alpha\in I}X_{\alpha}$, defined above, is compact if, and only if, X_{α} is compact for all $\alpha\in I.$

References for the week 9 notes

Theorem [9.1,](#page-0-0) the Universal Mapping Property of $X \times Y$, is [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Proposition 10.11] as well as [\[Armstrong,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631) Theorem (3.13)].

Lemma [9.2](#page-2-0) about a homeomorphic copy $X \times \{y_0\}$ of X in $X \times Y$ is a strengthening of [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Proposition 10.14] which only asserts that the map $i_{y_0} \colon x \mapsto (x, y_0)$ is continuous.

Proposition [9.3:](#page-2-1) (a) Hausdorffness of $X \times Y$ is [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Proposition 11.17b], [\[Armstrong,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631) Theorem (3.14)]; (b) connectedness is [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Theorem 12.18], [\[Armstrong,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631) Theorem (3.26)].

The baby Tychonoff theorem [9.5](#page-4-1) is [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Theorem 13.21] and [\[Armstrong,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631) Theorem (3.15)]. Our proof follows [\[Armstrong\]](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631). In particular, our Lemma [9.4](#page-4-0) is [\[Armstrong,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631) Lemma (3.16)].

The Heine-Borel theorem [9.6](#page-6-0) is [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Theorem 13.22] and [\[Armstrong,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631) Theorem (3.1)].

The general Tychonoff theorem [9.7](#page-10-1) is not usually proved in introductory-level Topology textbooks. A proof can be found in [\[Willard,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma9959299010001631) Theorem 17.8].