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The universal mapping property of the product space 𝑋×𝑌

Any function 𝑓∶ 𝑍 → 𝑋 × 𝑌 must output a point of 𝑋 × 𝑌 which is a pair, hence must
be of the form 𝑓(𝑧) = (𝑓𝑋(𝑧), 𝑓𝑌(𝑧)). Formally, the “components” of 𝑓 are

𝑓𝑋 ∶ 𝑍
𝑓
−→ 𝑋 × 𝑌

𝑝𝑋
−→ 𝑋, 𝑓𝑌 ∶ 𝑍

𝑓
−→ 𝑋 × 𝑌

𝑝𝑌
−→ 𝑌

where 𝑝𝑋, 𝑝𝑌 are the projections. The next result is called the universal mapping property
because it describes all possible continuous functions with the codomain 𝑋 × 𝑌.

Theorem 9.1: the universal mapping property.

Let 𝑋,𝑌 , 𝑍 be topological spaces. There is a 1-to-1 correspondence between
• continuous functions 𝑓∶ 𝑍 → 𝑋 × 𝑌, and
• pairs of continuous functions (𝑓𝑋 ∶ 𝑍 → 𝑋, 𝑓𝑌 ∶ 𝑍 → 𝑌 ).

To 𝑓∶ 𝑍 → 𝑋×𝑌 there corresponds the pair (𝑓𝑋 = 𝑝𝑋 ∘𝑓, 𝑓𝑌 = 𝑝𝑌 ∘𝑓). Vice versa,
to a pair (𝑓𝑋, 𝑓𝑌) there corresponds the function 𝑓 defined by 𝑓(𝑧) = (𝑓𝑋(𝑧), 𝑓𝑌(𝑧)).
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Remark: put simply, the Theorem says that 𝑓∶ 𝑍 → 𝑋 × 𝑌 is continuous if and only if
the functions 𝑓𝑋 = 𝑝𝑋 ∘ 𝑓, 𝑓𝑌 = 𝑝𝑌 ∘ 𝑓 are continuous.

Proof of the Theorem. Let 𝑓∶ 𝑍 → 𝑋 × 𝑌 be a continuous function. Since 𝑝𝑋, 𝑝𝑌 are
continuous by Proposition 8.1, and a composition of continuous functions is continuous,
the functions 𝑓𝑋 = 𝑝𝑋 ∘ 𝑓, 𝑓𝑌 = 𝑝𝑌 ∘ 𝑓 are continuous.

Vice versa, let pair 𝑓𝑋 ∶ 𝑍 → 𝑋, 𝑓𝑌 ∶ 𝑍 → 𝑌 be continuous functions. We need to check
that the function 𝑓 = (𝑓𝑋, 𝑓𝑌) is continuous. By definition of the product topology, an
arbitrary open subset of 𝑋 × 𝑌 is a union ⋃𝛼∈𝐼 𝑈𝛼 × 𝑉𝛼 of open rectangles, where, for
each 𝛼 ∈ 𝐼, 𝑈𝛼 is open in 𝑋 and 𝑉𝛼 is open in 𝑌. The preimage of a union is the union
of preimages, so

𝑓−1(⋃
𝛼∈𝐼

𝑈𝛼 × 𝑉𝛼) = ⋃
𝛼∈𝐼

𝑓−1(𝑈𝛼 × 𝑉𝛼).

Note that 𝑓−1(𝑈𝛼 × 𝑉𝛼) consists of 𝑧 ∈ 𝑍 such that 𝑓𝑋(𝑧) ∈ 𝑈𝛼 and 𝑓𝑌(𝑧) ∈ 𝑉𝛼. In
other words, 𝑓−1(𝑈𝛼 × 𝑉𝛼) = 𝑓−1

𝑋 (𝑈𝛼) ∩ 𝑓−1
𝑌 (𝑉𝛼) which is open in 𝑍, because 𝑓−1

𝑋 (𝑈𝛼)
and 𝑓−1

𝑌 (𝑉𝛼) are preimages of open sets under the confinuous functions 𝑓𝑋, 𝑓𝑌, and the
intersection of two open sets is open.

Therefore, ⋃𝛼∈𝐼 𝑓
−1(𝑈𝛼 × 𝑉𝛼) is open as a union of open sets. We have verified the

definition of “continuous” for 𝑓.

It remains to note that, given 𝑓∶ 𝑍 → 𝑋 × 𝑌, taking 𝑓𝑋 = 𝑝𝑋 ∘ 𝑓 and 𝑓𝑌 = 𝑝𝑌 ∘ 𝑓 then
constructing (𝑓𝑋, 𝑓𝑌) brings us back to the function 𝑓. Also, given the functions 𝑓𝑋, 𝑓𝑌,
if 𝑓 = (𝑓𝑋, 𝑓𝑌) then taking 𝑝𝑋 ∘ 𝑓 and 𝑝𝑌 ∘ 𝑓 returns us to the functions 𝑓𝑋 and 𝑓𝑌. This
shows that we have two mutually inverse correspondences between functions 𝑍 → 𝑋 × 𝑌
and pairs of functions 𝑍 → 𝑋, 𝑍 → 𝑌. Hence we have a bijective (1-to-1) correspondence
between the two sets of functions, as claimed.
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Topological properties of the product space

We would like to understand how the topological properties of the product space 𝑋 × 𝑌
are determined by the topological properties of the spaces 𝑋 and 𝑌. The following result
helps us by showing how homeomorphic copies of the space 𝑋 sit inside 𝑋 × 𝑌:

Lemma 9.2: embedding of 𝑋 in 𝑋 × 𝑌.

For each 𝑦0 ∈ 𝑌, the subspace 𝑋 × {𝑦0} of 𝑋 × 𝑌 is homeomorphic to 𝑋.

Proof. Consider the embedding map 𝑖𝑦0
∶ 𝑋 → 𝑋 × 𝑌, 𝑥 → (𝑥, 𝑦0). Note that 𝑝𝑋 ∘ 𝑖𝑦0

is the identity map 𝑥 ↦ 𝑥 of 𝑋 which is continuous, and 𝑝𝑌 ∘ 𝑖𝑦0
is the constant map

const𝑦0
∶ 𝑋 → 𝑌, which is continuous. Hence by the Universal Mapping Property, The-

orem 9.1, 𝑖𝑦0
is a continuous map. We can restrict the codomain and consider 𝑖𝑦0

as a
continuous map 𝑋 → 𝑋 × {𝑦0}.

The projection 𝑝𝑋 ∶ 𝑋 × 𝑌 → 𝑋 is continuous by Proposition 8.1, so its restriction
𝑝𝑋|𝑋×{𝑦0} is continuous.

The composition 𝑥 ↦ (𝑥, 𝑦0) ↦ 𝑥 shows that 𝑝𝑋|𝑋×{𝑦0} ∘ 𝑖𝑦0
= id𝑋. Also, the compo-

sition (𝑥, 𝑦0) ↦ 𝑥 ↦ (𝑥, 𝑦0) shows that 𝑖𝑦0
∘ 𝑝𝑋|𝑋×{𝑦0} = id𝑋×{𝑦0}. Therefore, 𝑖𝑦0

and
𝑝𝑋|𝑋×{𝑦0} are two mutually inverse continuous maps. We have verified the definition of
“homeomorphism” for 𝑖𝑦0

∶ 𝑋 → 𝑋 × {𝑦0}.

Remark: in the same way, if 𝑥0 ∈ 𝑋, the subspace {𝑥0} × 𝑌 of 𝑋 × 𝑌 is homeomorphic
to 𝑌.

Proposition 9.3: Hausdorfness and connectedness of the product.

If 𝑋,𝑌 are non-empty topological spaces, then
(a) 𝑋 and 𝑌 are both Hausdorff ⟺ 𝑋 ×𝑌 is Hausdorff;
(b) 𝑋 and 𝑌 are both connected ⟺ 𝑋 ×𝑌 is connected.
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𝑋

𝑌

(𝑥, 𝑦)

(𝑥′, 𝑦′)

Figure 9.1: if 𝑋, 𝑌 are connected, any two points of 𝑋 ×𝑌 are joined by a connected set

Proof (not given in class). (a) ⇒: assume 𝑋, 𝑌 are Hausdorff, and let (𝑥, 𝑦) ≠ (𝑥′, 𝑦′)
be two distinct points of 𝑋 × 𝑌. Then either 𝑥 ≠ 𝑥′, or 𝑦 ≠ 𝑦′, or both.

If 𝑥 ≠ 𝑥′, take 𝑈,𝑈 ′ to be open sets in 𝑋 such that 𝑥 ∈ 𝑈, 𝑥′ ∈ 𝑈 ′ and 𝑈 ∩ 𝑈 ′ = ∅.
Then the points (𝑥, 𝑦) and (𝑥′, 𝑦′) lie in disjoint open cylinder sets 𝑈 × 𝑌 and 𝑈 ′ × 𝑌. If
𝑦 ≠ 𝑦′, a similar argument leads to disjoint open cylinders 𝑋 × 𝑉 and 𝑋 × 𝑉 ′. We have
thus verified the definition of “Hausdorff” for 𝑋 × 𝑌.

⇐: assume 𝑋×𝑌 is Hausdorff. Pick a point 𝑦0 in the non-empty space 𝑌. Subspaces of a
Hausdorff space are Hausdorff (Proposition 3.3), so 𝑋×{𝑦0} is Hausdorff; it is homeomor-
phic to 𝑋 by Lemma 9.2, and Hausdorffness is a topological property (Proposition 3.1),
so 𝑋 is Hausdorff. Similarly, 𝑌 is Hausdorff.

(b) ⇒: assume 𝑋, 𝑌 are connected. Any two points (𝑥, 𝑦) and (𝑥′, 𝑦′) of 𝑋×𝑌 lie in the
set (𝑋 × {𝑦}) ∪ ({𝑥′} × 𝑌 ), see Figure 9.1. Connectedness is a topological property, so
𝑋×{𝑦}, which is homeomorphic to 𝑋 by Lemma 9.2, is connected. Similarly, {𝑥′}×𝑌 is
connected. The union of two connected sets, which have a common point, is connected
by Lemma 7.3, so (𝑥, 𝑦) and (𝑥′, 𝑦′) lie in the same connected component of 𝑋×𝑌. Since
the two points were arbitrary, 𝑋×𝑌 has only one connected component, i.e., is connected.

⇐: if 𝑋 × 𝑌 is connected, then 𝑋 = 𝑝𝑋(𝑋 × 𝑌 ) and 𝑌 = 𝑝𝑌(𝑋 × 𝑌 ) are connected,
because 𝑝𝑋, 𝑝𝑌 are continuous (Proposition 8.1) and a continuous image of a connected
space is connected (Theorem 7.1).
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The baby Tychonoff theorem about compactness of 𝑋 × 𝑌

We will now deal with compactness of 𝑋 × 𝑌 which is more intricate than Hausdorfness
and connectedness. Since the product topology on 𝑋 × 𝑌 is given by its base ℬ, we first
prove a lemma which allows us to check compactness using only covers by sets from ℬ.

Lemma 9.4: a “basic compact” is a compact.

Let ℬ be a base of topology on a space 𝑋. Suppose that every basic cover of 𝑋
(i.e., a cover by sets from ℬ) has a finite subcover. Then 𝑋 is compact.

Proof. By definition of a base, every open set 𝑈 ⊆ 𝑋 can be written as a union of basic
open sets (i.e., members of ℬ). Call these basic open sets “the children” of 𝑈.

Suppose that 𝒞 is a cover of 𝑋 by open sets 𝑈𝛼, 𝛼 ∈ 𝐼. Consider the collection 𝒞1 = {all
children of all sets from𝒞}. Each set in𝒞 is the union of its children, so⋃𝒞1 = ⋃𝒞 = 𝑋.

Thus, 𝒞1 is a basic open cover of 𝑋. Then by assumption, a finite cover 𝑉1,… , 𝑉𝑛 can
be chosen from 𝒞1: 𝑉1 ∪ ⋯ ∪ 𝑉𝑛 = 𝑋. The sets 𝑉1,… , 𝑉𝑛 may not lie in 𝒞, but their
“parents” do. Consider the finite subcollection of 𝒞 given by

a parent of 𝑉1, a parent of 𝑉2, …, a parent of 𝑉𝑛.

Here “a parent” means an arbitrary choice of parent if 𝑉𝑖 has more than one parent. Since
𝑉𝑖 ⊆ (a parent of 𝑉𝑖), the union of the 𝑛 “parents” is also 𝑋. Given any open cover 𝒞 of
𝑋, we constructed a finite subcover, thus verifying the definition of “compact” for 𝑋.

Theorem 9.5: the baby Tychonoff theorem.

If 𝑋,𝑌 are non-empty spaces, both 𝑋 and 𝑌 are compact ⟺ 𝑋 ×𝑌 is compact.

Proof. ⇐: 𝑋×𝑌 is compact, so 𝑋 = 𝑝𝑋(𝑋×𝑌 ) is compact by Theorem 4.2 (continuous
image of compact) as 𝑝𝑋 is continuous by Proposition 8.1. Similarly, 𝑌 is compact.
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𝑉 (𝑦0)

𝑋

𝑈1 × 𝑉1

𝑈2 × 𝑉2

𝑈3 × 𝑉3

𝑈4 × 𝑉4

𝑦0

Figure 9.2: if finitely many open rectangles cover 𝑋 × {𝑦0}, they cover an open cylinder
𝑋 × 𝑉 (𝑦0)

⇒: let 𝑋, 𝑌 be compact. We assume that 𝒞 is a cover of 𝑋 × 𝑌 by open rectangles
and show that 𝒞 has a finite subcover. Since, by definition, open rectangles form a base
of the topology on 𝑋 × 𝑌, Lemma 9.4 will imply that 𝑋 × 𝑌 is compact.

For each 𝑦0 ∈ 𝑌, 𝑋 × {𝑦0} is homeomorphic to 𝑋 (Lemma 9.2), hence 𝑋 × {𝑦0} is a
compact set, which by compactness criterion 4.1 is covered by a finite subcollection of
open rectangles 𝑈1×𝑉1,… , 𝑈𝑛×𝑉𝑛 from 𝒞. We may assume that each 𝑈𝑖×𝑉𝑖 intersects
𝑋 × {𝑦0} (otherwise delete it from the finite cover), so 𝑉𝑖 ∋ 𝑦0 for all 𝑖 = 1,… , 𝑛.

Define the open neighbourhood 𝑉 (𝑦0) to be 𝑉1∩⋯∩𝑉𝑛. Then each open rectangle 𝑈𝑖×𝑉𝑖
contains 𝑈𝑖 × 𝑉 (𝑦0), and so the open rectangles 𝑈1 × 𝑉1,… , 𝑈𝑛 × 𝑉𝑛, which form the
finite cover of 𝑋 × {𝑦0}, also cover the open cylinder 𝑋 × 𝑉 (𝑦0), see Figure 9.2.

We have thus constructed an open neighbourhood 𝑉 (𝑦0) for every point 𝑦0 of 𝑌. We
now use compactness of 𝑌 to choose a finite subcover of 𝑌 by these neighbourhoods: say,
𝑉 (𝑦1),… , 𝑉 (𝑦𝑚) such that 𝑉 (𝑦1) ∪ ⋯ ∪ 𝑉 (𝑦𝑚) = 𝑌.

Then the union of the cylinders 𝑋 × 𝑉 (𝑦1),… ,𝑋 × 𝑉 (𝑦𝑚) is 𝑋 × 𝑌. Also, by the above
construction, each cylinder 𝑋×𝑉 (𝑦𝑗) is covered by a finite subcollection of 𝒞. The union
of these 𝑚 finite subcollections is a finite subcover, chosen from 𝒞, for the whole of
𝑋 × 𝑌, as required.
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The following corollary is now easily obtained by induction. We understand the 𝑛-fold
product 𝑋1 ×𝑋2 ×⋯×𝑋𝑛 as the iterated product (((𝑋1 ×𝑋2) × 𝑋3) × … ) ×𝑋𝑛.

Corollary: the product of finitely many compact spaces is compact.

If 𝑋1,… ,𝑋𝑛 are compact topological spaces, then the product space 𝑋1 ×⋯×𝑋𝑛

is compact.

The Heine-Borel Theorem

The baby Tychonoff theorem is now used to extend the Heine-Borel Lemma, Theorem 5.2,
which says that [0, 1] is compact, to a result which describes all compact sets in Euclidean
spaces ℝ𝑛.

Theorem 9.6: The Heine-Borel Theorem.

In the Euclidean space ℝ𝑛, a set 𝐾 is compact iff 𝐾 is closed and bounded.

Proof. The “only if” part is immediate by Proposition 5.1: if 𝐾 is a compact set in any
metric space, then 𝐾 is closed and bounded.

To prove the “if” part, assume that 𝐾 is a closed bounded subset of ℝ𝑛. Any bounded
set is a subset of an 𝑛-dimensional cube {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ∶ |𝑥𝑖| ≤ 𝑀 ∀𝑖 = 1,… , 𝑛}, for
some𝑀 > 0. This cube of side length 2𝑀 is the product space [−𝑀,𝑀]×⋯×[−𝑀,𝑀] =
[−𝑀,𝑀]𝑛.

Note that the closed bounded interval [−𝑀,𝑀] ⊆ ℝ is homeomorphic to [0, 1] (a home-
omorphism is afforded, for example, by a linear function mapping [0, 1] onto [−𝑀,𝑀]).
By the Heine-Borel Lemma, [0, 1] is compact, and so [−𝑀,𝑀] is also compact. By baby
Tychonoff theorem 9.5 and its Corollary, [−𝑀,𝑀]𝑛 is compact.

Thus 𝐾 is a closed subset of the compact [−𝑀,𝑀]𝑛, and so by Proposition 4.3, 𝐾 is
compact.
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The torus and its embedding in ℝ3

The theory that we have developed so far can be used to construct embeddings of abstractly
defined topological spaces in a Euclidean space. By an embedding, we mean the following:

Definition: embedding.

Let 𝑋, 𝑌 be topological spaces. An embedding of 𝑋 in 𝑌 is a map 𝑓∶ 𝑋 → 𝑌 such
that restricting the codomain gives a homeomorphism 𝑓∶ 𝑋

∼
−→ 𝑓(𝑋).

In other words, an embedding means constructing inside 𝑌 a subspace homeomorphic to 𝑋.
This is important in many applications.

Example: embedding of the torus in ℝ3.

Let 𝑆1 denote the unit circle {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥2 + 𝑦2 = 1} in the Euclidean plane.
Define the torus as the product space

𝕋2 = 𝑆1 × 𝑆1.

Show: 𝕋2 is compact. Construct an embedding of 𝕋2 in the Euclidean space ℝ3.

Solution: 𝑆1 is closed and bounded in ℝ2, hence compact by Heine-Borel Theorem 9.6.

(There are alternative ways to show compactness of 𝑆1; for example, 𝑆1 is the image of
the map [0, 1] → ℝ2, 𝑡 ↦ (cos 2𝜋𝑡, sin 2𝜋𝑡) which is continuous; [0, 1] is compact, and a
continuous image of a compact is compact.)

It follows that 𝕋2 = 𝑆1 × 𝑆1 is compact by baby Tychonoff theorem 9.5.

It is not automatic that an embedding of 𝕋2 in ℝ3 must exist: note that 𝑆1 is a subspace
of ℝ2, so 𝕋2 is naturally a subspace of ℝ2 ×ℝ2 = ℝ4 and not ℝ3. Yet we can construct
an injective function 𝑓∶ 𝑆1 × 𝑆1 → ℝ3, as follows.

A point of 𝕋2 is a pair (𝑃 ,𝑄) where 𝑃 is a point on the first circle, and 𝑄 is a point on
the second unit circle in 𝑆1 × 𝑆1. It is convenient to represent the two points by their



Topological properties of product spaces 120

φ
θ

Figure 9.3: the torus 𝕋2 is defined as the product of two circles, so a point of 𝕋2 is a pair
of circle points and is represented by a pair of angles (𝜑, 𝜃)

angle coordinates (𝜑, 𝜃) with 𝜑, 𝜃 ∈ [0, 2𝜋), see Figure 9.3.

Fix two radii 𝑅, 𝑟 such that 𝑅 > 𝑟 > 0. Informally, we will think of the first circle in
𝑆1 ×𝑆1 (the blue circle in Figure 9.3) as the circle of radius 𝑅 in the horizontal 𝑥𝑦 plane
in ℝ3. The torus 𝕋2 is the disjoint union

𝕋2 = ⋃
𝑃∈𝑆1

{𝑃} × 𝑆1,

and for each 𝑃 on the blue circle, we map the subset {𝑃} × 𝑆1 of the torus to the red
circle of radius 𝑅, centred at 𝑃 and orthogonal to the blue circle. Thus, 𝑓∶ 𝑆1×𝑆1 → ℝ3

is given by
(𝜑, 𝜃) ↦ Rotate𝜑𝑧-axis((𝑅, 0, 0) + (cos 𝜃, 0, sin 𝜃))

as shown in Figure 9.4. An explicit formula for 𝑓(𝜑, 𝜃) will be worked out in the tutorial.

Explanation why 𝑓 is injective: 𝑓 maps two points (𝜑, 𝜃) and (𝜑′, 𝜃′) on 𝕋2 such that
𝜑 ≠ 𝜑′, onto two disjoint red circles in Figure 9.4, to the 𝑓-images are distinct. The
red circles are disjoint because we chose 𝑟 < 𝑅. In the case 𝜑 = 𝜑′, the two points are
mapped by 𝑓 onto the same red circle but to different points of the circle, as long as
𝜃 ≠ 𝜃′.

Explanation why 𝑓 is continuous: the 𝑥-component 𝑓𝑥 of 𝑓 can be written as an algebraic
expression in cos𝜑, sin𝜑, cos 𝜃 and sin 𝜃 (see the formula given in the tutorial). Note that
cos𝜑 and sin𝜑 are the actual coordinates of the point on the first (blue) circle, hence they
are continuous functions on 𝕋2 by Proposition 8.1. Same can be said of cos 𝜃 and sin 𝜃.
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Figure 9.4: the image of a point (𝜑, 𝜃) ∈ 𝕋2 in ℝ3 is obtained by rotating, through 𝜑
around the 𝑧 axis, the point 𝜃 on the red 𝑥𝑧 circle of radius 𝑟 around (𝑅, 0, 0). [Link to
online interactive 3D diagram]

Sums and products of continuous functions are continuous (this is known to be true for
metric spaces; for general topological spaces, see E4.5). Hence 𝑓𝑥 is a continuous function
from 𝕋2 to ℝ.

In the same way one shows that 𝑓𝑦 and 𝑓𝑧 are continuous ℝ-valued functions on 𝕋2. Hence
𝑓∶ 𝕋2 → ℝ3 is continuous by the Universal Mapping Property, Theorem 9.1.

Proof that 𝑓 is an embedding: restricting the codomain of continuous injection 𝑓 gives
the the continuous bijection 𝑓∶ 𝕋2 → 𝑓(𝕋2). We do not need continuity of the inverse
map: as 𝕋2 is compact and 𝑓(𝕋2) is metric hence Hausdorff, by the Topological Inverse
Function Theorem 4.5 𝑓∶ 𝕋2 ∼

−→ 𝑓(𝕋2) is a homeomorphism.

https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/torus.html
https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/torus.html
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The Tychonoff theorem (not done in class, not examinable)

Baby Tychonoff theorem 9.5 is a particular case of a result that we state here for com-
pleteness. The proof is beyond the scope of this course and can be found in the literature.

Let (𝑋𝛼)𝛼∈𝐼 be a collection of topological spaces. The topology on the Cartesian product
∏𝛼∈𝐼 𝑋𝛼 is defined to have base ℬ of sets of the form ∏𝛼∈𝐼 𝑈𝛼 where (1) 𝑈𝛼 = 𝑋𝛼 for
all but finitely many 𝛼 ∈ 𝐼; (2) 𝑈𝛼 is open in 𝑋𝛼 for all 𝛼 ∈ 𝐼.

The product topology on 𝑋 × 𝑌 is a particular case: (1) can be omitted if 𝐼 is finite.

Theorem 9.7: the Tychonoff theorem.

Suppose the space 𝑋𝛼 is not empty for all 𝛼 ∈ 𝐼. Then the product space ∏𝛼∈𝐼 𝑋𝛼,
defined above, is compact if, and only if, 𝑋𝛼 is compact for all 𝛼 ∈ 𝐼.

References for the week 9 notes

Theorem 9.1, the Universal Mapping Property of 𝑋×𝑌, is [Sutherland, Proposition 10.11] as well
as [Armstrong, Theorem (3.13)].

Lemma 9.2 about a homeomorphic copy 𝑋×{𝑦0} of 𝑋 in 𝑋×𝑌 is a strengthening of [Sutherland,
Proposition 10.14] which only asserts that the map 𝑖𝑦0 ∶ 𝑥 ↦ (𝑥, 𝑦0) is continuous.

Proposition 9.3: (a) Hausdorffness of 𝑋 × 𝑌 is [Sutherland, Proposition 11.17b], [Armstrong,
Theorem (3.14)]; (b) connectedness is [Sutherland, Theorem 12.18], [Armstrong, Theorem (3.26)].

The baby Tychonoff theorem 9.5 is [Sutherland, Theorem 13.21] and [Armstrong, Theorem (3.15)].
Our proof follows [Armstrong]. In particular, our Lemma 9.4 is [Armstrong, Lemma (3.16)].

The Heine-Borel theorem 9.6 is [Sutherland, Theorem 13.22] and [Armstrong, Theorem (3.1)].

The general Tychonoff theorem 9.7 is not usually proved in introductory-level Topology textbooks.
A proof can be found in [Willard, Theorem 17.8].

https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma9959299010001631
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