
Week 8

Definition of the product topology

Version 2024/11/26 To accessible online version of this chapter

Writing ℝ2 = ℝ × ℝ, we may define many metrics on ℝ2, for example 𝑑1, 𝑑2 and 𝑑∞,
see Figure 2.1. Yet, all these metrics define the same topology. This is not a coincidence:
given topological spaces 𝑋,𝑌, we will now construct the standard topology 𝑋 × 𝑌 called
the product topology. Importantly, the construction extends to the Cartesian product of
infinitely many topological spaces.

Key results of this chapter include the Tychonoff Theorem (only the baby version will
be proved in class) and the Heine-Borel Theorem. We will consider one the topologists’
favourite product space examples: the torus.

The Cartesian product

We begin with a reminder about the Cartesian product of sets.

Definition: Cartesian product of two sets.

Let 𝑋, 𝑌 be sets. The Cartesian product 𝑋 × 𝑌 is the set of all pairs (𝑥, 𝑦) with
𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.
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The Cartesian product construction extends to arbitrary finite or infinite collections of sets:

• the Cartesian product of 𝑛 sets is a set of 𝑛-tuples,

𝑋1 ×⋯×𝑋𝑛 =
𝑛
∏
𝑘=1

𝑋𝑘 = {(𝑥1,… , 𝑥𝑛) ∶ 𝑥𝑘 ∈ 𝑋𝑘 ∀𝑘 = 1,… , 𝑛};

• for a sequence 𝑋1, 𝑋2,… of sets, the Cartesian product is a set of sequences,
∞
∏
𝑘=1

𝑋𝑘 = {(𝑥𝑘)𝑘≥1 ∶ 𝑥𝑘 ∈ 𝑋𝑘 ∀𝑘 ≥ 1};

• for a collection {𝑋𝛼 ∶ 𝛼 ∈ 𝐼} of sets, the Cartesian product is a set of collections of
elements indexed by 𝐼,

∏
𝛼∈𝐼

𝑋𝛼 = {(𝑥𝛼)𝛼∈𝐼 ∶ 𝑥𝛼 ∈ 𝑋𝛼 ∀𝛼 ∈ 𝐼}.

We will initially focus on the Cartesian product of two sets.

Subsets of 𝑋 × 𝑌 of a special form will be important to us:

Definition: rectangle sets, cylinder sets.

A rectangle set in 𝑋 × 𝑌 is a set of of the form 𝐴×𝐵 where 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑌.

A cylinder set in 𝑋 × 𝑌 is a rectangle set of the form 𝐴× 𝑌 or 𝑋 ×𝐵.

Figure 8.1 illustrates these types of subsets of𝑋×𝑌. To produce such informal illustrations,
one often visualises 𝑋 and 𝑌 as intervals on the coordinate axes, and subsets 𝐴, 𝐵 as
subintervals; this motivates the terminology.

Note that not all subsets of 𝑋 × 𝑌 are cylinder or rectangle sets.

Example: intersections of rectangle sets.

Show that the intersection of any collection of rectangle sets is a rectangle set. Show
that a union of rectangle sets may not be a rectangle set.

Solution: we calculate the intersection of two rectangle sets 𝐴 × 𝐵 and 𝐴′ × 𝐵′ where
𝐴,𝐴′ ⊆ 𝑋 and 𝐵,𝐵′ ⊆ 𝑌. We have
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Figure 8.1: rectangle and cylinder sets in 𝑋 × 𝑌. The union of rectangles may not be a
rectangle, but the intersection always is.

(𝐴×𝐵)∩(𝐴′×𝐵′) = {(𝑥, 𝑦) ∶ (𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵) and (𝑥 ∈ 𝐴′ and 𝑦 ∈ 𝐵′)}
= {(𝑥, 𝑦) ∶ 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐴′ and 𝑦 ∈ 𝐵 and 𝑦 ∈ 𝐵′}
= (𝐴 ∩ 𝐴′) × (𝐵 ∩ 𝐵′), a rectangle set.

In the same way one shows, for any collection {𝐴𝛼 ×𝐵𝛼}𝛼∈𝐼 of rectangle sets, that

⋂
𝛼∈𝐼

(𝐴𝛼 ×𝐵𝛼) = (⋂
𝛼∈𝐼

𝐴𝛼) × (⋂
𝛼∈𝐼

𝐵𝛼),

i.e., the intersection is a rectangle set. Yet Figure 8.1 shows an example of two rectangle
sets (with grey pattern) whose union is not a rectangle set.
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The product topology

From now on, we assume that 𝑋 and 𝑌 are not just sets but topological spaces. Consider
the collection

ℬ = {𝑈 × 𝑉 ∶ 𝑈 ⊆ 𝑋 is open in 𝑋, 𝑉 ⊆ 𝑌 is open in 𝑌 }

of subsets called open rectangles in 𝑋 × 𝑌.

Definition: product topology on 𝑋 × 𝑌.

The product topology on 𝑋 × 𝑌 is the topology with base ℬ of open rectangles.
The set 𝑋 × 𝑌 with this topology is the product space of 𝑋 and 𝑌.

Remark: one needs to show that ℬ is indeed a base of some topology. This means
checking that the intersection of two sets from ℬ can be written as a union of sets from
ℬ. But here, an even stronger statement holds: (𝑈×𝑉 )∩(𝑈 ′×𝑉 ′) = (𝑈∩𝑈 ′)×(𝑉 ∩𝑉 ′),
that is, an intersection of two open rectangles is an open rectangle (no need to write it as
a union of some collection of open rectangles).

We omit a full formal argument showing that ℬ is a base of a topology; interested students
can find it in the literature.

Alert.

Not all open sets in 𝑋×𝑌 are open rectangles 𝑈×𝑉. Open sets are arbitrary unions
of open rectangles.

The Euclidean plane is our first expected example of a product space.

Example.

Show that the metric Euclidean topology on ℝ2 is the product topology on ℝ×ℝ.

Solution (not given in class): denote the product topology by 𝒯ℝ×ℝ and the metric
Euclidean topology by 𝒯metric. Every open rectangle from the base ℬ of 𝒯ℝ×ℝ is open



Definition of the product topology 104

in 𝒯metric, hence 𝒯metric is stronger than 𝒯ℝ×ℝ. On the other hand, we saw earlier that
𝒯metric can be defined by the metric 𝑑∞((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = max(|𝑥1−𝑥2|, |𝑦2−𝑦2|) and
so has base of open squares 𝐵𝑟((𝑥, 𝑦)) = (𝑥−𝑟, 𝑥+𝑟)×(𝑦−𝑟, 𝑦+𝑟) which is a subcollection
of ℬ. Hence 𝒯metric is weaker than 𝒯ℝ×ℝ. We conclude that 𝒯metric = 𝒯ℝ×ℝ.

The product space 𝑋 × 𝑌 comes equipped with two continuous maps.

Proposition 8.1: projections are continuous.

Given a product space 𝑋 × 𝑌, the following projection maps are continuous:
𝑝𝑋 ∶ 𝑋 × 𝑌 → 𝑋, (𝑥, 𝑦) ↦ 𝑥, and
𝑝𝑌 ∶ 𝑋 × 𝑌 → 𝑌, (𝑥, 𝑦) ↦ 𝑦.

Proof. If 𝑈 ⊆ 𝑋 is open, 𝑝−1
𝑋 (𝑈) = 𝑈 × 𝑌. This is an open rectangle, hence an open set

in 𝑋 × 𝑌 by definition of the product topology. We have thus verified the definition of
“𝑝𝑋 is continuous”. The proof for 𝑝𝑌 is similar.

References for the week 8 notes

The definition of product topology on 𝑋 × 𝑌 and a formal proof that the collection ℬ of open
rectangles in 𝑋 × 𝑌 is a base of a topology are given in [Sutherland, Proposition 10.9]. Our
Proposition 8.1, the projections are continuous, is [Sutherland, Proposition 10.10].

https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
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