
Week 7

Exercises (answers at end)

Version 2024/11/20. To accessible online version of these exercises

Exercise 7.0. This is an unseen exercise in Applied Topology. In the diagram below,
each letter of the English alphabet is drawn as a union of straight line segments and arcs.

Some letters are homeomorphic: for example, C ≅ J, both are homeomorphic to a closed
interval. Consider such homeomorphisms to be geometrically obvious.

Some letters are not homeomorphic: here is a topological property that can distinguish
them. If 𝑋 is a topological space, call 𝑝 ∈ 𝑋 a point of connectivity 𝑘 if 𝑋 ∖ {𝑝} has
exactly 𝑘 connected components. The following is easy to prove: any homeomorphism
𝑋

∼
−→ 𝑌 maps a point of connectivity 𝑘 to a point of connectivity 𝑘. Hence, for each 𝑘,

the number of points of connectivity 𝑘 is a topological property. Example:
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3 O ≇ P: O has no points of connectivity 2 but
P has them;
T ≇ O and T ≇ P: T has a point of con-
nectivity 3 while O, P have no such points.

CHALLENGE. Sort the letters into homeomorphism classes. You should have 9 classes.

Class 1:

Class 2:

Class 3:

Class 4:

Class 5:

Class 6:

Class 7:

Class 8:

Class 9:
Exercise 7.1. Consider the topological space ℚ which is the set of all rational numbers,
viewed as a subspace of the Euclidean real line ℝ.

1. Is ℚ Hausdorff? Is ℚ compact? Justify your answer.
2. Show that the topology on ℚ is not discrete.
3. A topological space 𝑋 is called totally disconnected if every non-empty connected

subset of 𝑋 is a singleton. Show that ℚ is totally disconnected.
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Exercise 7.0. This is an unseen exercise in Applied Topology. In the diagram below,
each letter of the English alphabet is drawn as a union of straight line segments and arcs.

Some letters are homeomorphic: for example, C ≅ J, both are homeomorphic to a closed
interval. Consider such homeomorphisms to be geometrically obvious.

Some letters are not homeomorphic: here is a topological property that can distinguish
them. If 𝑋 is a topological space, call 𝑝 ∈ 𝑋 a point of connectivity 𝑘 if 𝑋 ∖ {𝑝} has
exactly 𝑘 connected components. The following is easy to prove: any homeomorphism
𝑋

∼
−→ 𝑌 maps a point of connectivity 𝑘 to a point of connectivity 𝑘. Hence, for each 𝑘,
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1

3 O ≇ P: O has no points of connectivity 2 but
P has them;
T ≇ O and T ≇ P: T has a point of con-
nectivity 3 while O, P have no such points.

CHALLENGE. Sort the letters into homeomorphism classes. You should have 9 classes.

Class 1: have a point of connec-
tivity 4: K X

Class 2: has two points of connec-
tivity 3: H

Class 3: one point of connectivity
3, three points of connectivity 1:
E F T Y

Class 4: one point of connectivity
3, infinitely many points of con-
nectivity 1: Q R

Class 5: one point of connectivity 2: B

Class 6: the set of points of connectivity 2 is
disconnected: A

Class 7: the set of points of connectivity 2 is
connected: P

Class 8: intervals — two points of connectivity
1, all other points are of connectivity 2: C G I
J L M N S U V W Z

Class 9: circles — all points are of connectivity
1: D O

Exercise 7.1. Consider the topological space ℚ which is the set of all rational numbers,
viewed as a subspace of the Euclidean real line ℝ.

1. Is ℚ Hausdorff? Is ℚ compact? Justify your answer.
2. Show that the topology on ℚ is not discrete.
3. A topological space 𝑋 is called totally disconnected if every non-empty connected

subset of 𝑋 is a singleton. Show that ℚ is totally disconnected.

Answer to E7.1. 1. ℚ is Hausdorff because it is a subspace of a metric (hence Hausdorff)
space ℝ. By Proposition 5.1, compacts in the metric space ℝ must be closed and bounded.
Since ℚ is not bounded, ℚ is not compact. (Another reason for non-compactness of ℚ
is that ℚ is not closed in ℝ.)

2. Assume for contradiction that ℚ is discrete. Then {0} must be an open subset of ℚ,
so by definition of subspace topology, {0} = ℚ∩𝑈 where 𝑈 is open in ℝ. By definition of
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an open set in a metric space, 𝑈 must contain the open ball (−𝜀, 𝜀) in ℝ for some 𝜀 > 0.
But any interval (−𝜀, 𝜀) of non-zero length contains infinitely many rational numbers,
hence ℚ∩𝑈 is infinite and not {0}. This contradiction shows that our assumption, “ℚ is
discrete”, was false.

3. Let 𝐴 ⊆ ℚ be a non-empty connected set. The inclusion map in ∶ ℚ → ℝ is continuous
by Proposition 2.7, so in(𝐴) is an interval in ℝ by Proposition 5.3. Yet in(𝐴) = 𝐴, and
non-empty intervals in ℝ which consist entirely of rational points are singletons (every
interval of non-zero length will contain irrationals). We have proved that 𝐴 is a singleton.

References for the exercise sheet

E7.1 is an enhanced version of [Armstrong, Example 3 in Section 3.5].

https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631
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