Week 7

Exercises (answers at end)

Version 2024/11/20. [To accessible online version of these exercises](https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/ch7ex.html)

Exercise 7.0. This is an unseen exercise in Applied Topology. In the diagram below, each letter of the English alphabet is drawn as a union of straight line segments and arcs.

CDFFGHI, KI MN $QRSTUVWXY7$

Some letters are homeomorphic: for example, $C \cong J$, both are homeomorphic to a closed interval. **Consider such homeomorphisms to be geometrically obvious.**

Some letters are **not** homeomorphic: here is a topological property that can distinguish them. If X is a topological space, call $p \in X$ a point of connectivity k if $X \setminus \{p\}$ has exactly k connected components. The following is easy to prove: any homeomorphism $X \stackrel{\sim}{\to} Y$ maps a point of connectivity k to a point of connectivity k . Hence, for each $k,$ the number of points of connectivity k is a topological property. Example:

Exercises (answers at end) 96

CHALLENGE. Sort the letters into homeomorphism classes. You should have 9 classes.

Exercise 7.1. Consider the topological space Q which is the set of all rational numbers, viewed as a subspace of the Euclidean real line ℝ.

- 1. Is $\mathbb Q$ Hausdorff? Is $\mathbb Q$ compact? Justify your answer.
- 2. Show that the topology on ℚ is **not** discrete.
- 3. A topological space X is called **totally disconnected** if every non-empty connected subset of X is a singleton. Show that $\mathbb Q$ is totally disconnected.

Week 7

Exercises — solutions

Version 2024/11/20. [To accessible online version of these exercises](https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/ch7ex.html)

Exercise 7.0. This is an unseen exercise in Applied Topology. In the diagram below, each letter of the English alphabet is drawn as a union of straight line segments and arcs.

CDFFGHI, KI MN $QRSTUVWX7$

Some letters are homeomorphic: for example, $C \cong J$, both are homeomorphic to a closed interval. **Consider such homeomorphisms to be geometrically obvious.**

Some letters are **not** homeomorphic: here is a topological property that can distinguish them. If X is a topological space, call $p \in X$ a point of connectivity k if $X \setminus \{p\}$ has exactly k connected components. The following is easy to prove: any homeomorphism $X \stackrel{\sim}{\to} Y$ maps a point of connectivity k to a point of connectivity k . Hence, for each $k,$ the number of points of connectivity k is a topological property. Example:

 $\mathbf{0} \not\cong \mathbf{P}$: O has no points of connectivity 2 but P has them; $T \not\cong 0$ and $T \not\cong P$: T has a point of con-

nectivity 3 while O, P have no such points.

CHALLENGE. Sort the letters into homeomorphism classes. You should have 9 classes.

Exercise 7.1. Consider the topological space Q which is the set of all rational numbers, viewed as a subspace of the Euclidean real line ℝ.

- 1. Is $\mathbb Q$ Hausdorff? Is $\mathbb Q$ compact? Justify your answer.
- 2. Show that the topology on ℚ is **not** discrete.
- 3. A topological space X is called **totally disconnected** if every non-empty connected subset of X is a singleton. Show that $\mathbb Q$ is totally disconnected.

Answer to E7.1. 1. \mathbb{Q} is Hausdorff because it is a subspace of a metric (hence Hausdorff) space \mathbb{R} . By Proposition [5.1,](#page--1-0) compacts in the metric space \mathbb{R} must be closed and bounded. Since ℚ is not bounded, ℚ **is not compact.** (Another reason for non-compactness of ℚ is that Q is not closed in \mathbb{R} .)

2. Assume for contradiction that $\mathbb Q$ is discrete. Then $\{0\}$ must be an open subset of $\mathbb Q$, so by definition of subspace topology, $\{0\} = \mathbb{Q} \cap U$ where U is open in \mathbb{R} . By definition of an open set in a metric space, U must contain the open ball $(-\varepsilon, \varepsilon)$ in ℝ for some $\varepsilon > 0$. But any interval $(-\varepsilon, \varepsilon)$ of non-zero length contains infinitely many rational numbers, hence $\mathbb{Q} \cap U$ is infinite and not $\{0\}$. This contradiction shows that our assumption, " \mathbb{Q} is discrete", was false.

3. Let $A \subseteq \mathbb{Q}$ be a non-empty connected set. The inclusion map in: $\mathbb{Q} \to \mathbb{R}$ is continuous by Proposition [2.7,](#page--1-1) so $\text{in}(A)$ is an interval in ℝ by Proposition [5.3.](#page--1-2) Yet $\text{in}(A) = A$, and non-empty intervals in ℝ which consist entirely of rational points are singletons (every interval of non-zero length will contain irrationals). We have proved that A is a singleton.

References for the exercise sheet

E7.1 is an enhanced version of [\[Armstrong,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631) Example 3 in Section 3.5].