Week 7

Exercises (answers at end)

Version 2024/11/20. To accessible online version of these exercises

Exercise 7.0. This is an unseen exercise in Applied Topology. In the diagram below, each letter of the English alphabet is drawn as a union of straight line segments and arcs.

ABCDEFGHIJKLMN Opqrstuvwxyz

Some letters are homeomorphic: for example, $C \cong J$, both are homeomorphic to a closed interval. Consider such homeomorphisms to be geometrically obvious.

Some letters are **not** homeomorphic: here is a topological property that can distinguish them. If X is a topological space, call $p \in X$ a point of connectivity k if $X \setminus \{p\}$ has exactly k connected components. The following is easy to prove: any homeomorphism $X \xrightarrow{\sim} Y$ maps a point of connectivity k to a point of connectivity k. Hence, for each k, the number of points of connectivity k is a topological property. Example:

 $O \ncong P: O$ has no points of connectivity 2 but P has them; $T \ncong O$ and $T \ncong P: T$ has a point of connectivity 3 while O, P have no such points.

CHALLENGE. Sort the letters into homeomorphism classes. You should have 9 classes.

Class 1:	Class 5:
Class 2:	Class 6:
Class 3:	Class 7:
Class 4:	Class 8:
	Class 9:

Exercise 7.1. Consider the topological space \mathbb{Q} which is the set of all rational numbers, viewed as a subspace of the Euclidean real line \mathbb{R} .

- 1. Is ${\mathbb Q}$ Hausdorff? Is ${\mathbb Q}$ compact? Justify your answer.
- 2. Show that the topology on ${\mathbb Q}$ is not discrete.
- 3. A topological space X is called **totally disconnected** if every non-empty connected subset of X is a singleton. Show that \mathbb{Q} is totally disconnected.

Week 7

Exercises — solutions

Version 2024/11/20. To accessible online version of these exercises

Exercise 7.0. This is an unseen exercise in Applied Topology. In the diagram below, each letter of the English alphabet is drawn as a union of straight line segments and arcs.

ABCDEFGHIJKLMN Opqrstuvwxyz

Some letters are homeomorphic: for example, $C \cong J$, both are homeomorphic to a closed interval. Consider such homeomorphisms to be geometrically obvious.

Some letters are **not** homeomorphic: here is a topological property that can distinguish them. If X is a topological space, call $p \in X$ a point of connectivity k if $X \setminus \{p\}$ has exactly k connected components. The following is easy to prove: any homeomorphism $X \xrightarrow{\sim} Y$ maps a point of connectivity k to a point of connectivity k. Hence, for each k, the number of points of connectivity k is a topological property. Example:

O \cong **P**: O has no points of connectivity 2 but P has them; **T** \cong **O** and **T** \cong **P**: T has a point of connectivity 3 while O, P have no such points.

CHALLENGE. Sort the letters into homeomorphism classes. You should have 9 classes.

Class 1: have a point of connec-	Class 5: one point of connectivity 2: B
tivity 4: K X	Class 6: the set of points of connectivity 2 is
Class 2: has two points of connec-	disconnected: A
tivity 3: H	Class 7: the set of points of connectivity 2 is
Class 3: one point of connectivity	connected: P
3, three points of connectivity 1: E F T Y	Class 8: intervals — two points of connectivity 1, all other points are of connectivity 2: C G I
Class 4: one point of connectivity	JLMNSUVWZ
3 , infinitely many points of con- nectivity 1 : Q R	Class 9: circles — all points are of connectivity 1: D O

Exercise 7.1. Consider the topological space \mathbb{Q} which is the set of all rational numbers, viewed as a subspace of the Euclidean real line \mathbb{R} .

- 1. Is \mathbb{Q} Hausdorff? Is \mathbb{Q} compact? Justify your answer.
- 2. Show that the topology on \mathbb{Q} is **not** discrete.
- 3. A topological space X is called **totally disconnected** if every non-empty connected subset of X is a singleton. Show that \mathbb{Q} is totally disconnected.

Answer to E7.1. 1. \mathbb{Q} is Hausdorff because it is a subspace of a metric (hence Hausdorff) space \mathbb{R} . By Proposition 5.1, compacts in the metric space \mathbb{R} must be closed and bounded. Since \mathbb{Q} is not bounded, \mathbb{Q} is not compact. (Another reason for non-compactness of \mathbb{Q} is that \mathbb{Q} is not closed in \mathbb{R} .)

2. Assume for contradiction that \mathbb{Q} is discrete. Then $\{0\}$ must be an open subset of \mathbb{Q} , so by definition of subspace topology, $\{0\} = \mathbb{Q} \cap U$ where U is open in \mathbb{R} . By definition of

an open set in a metric space, U must contain the open ball $(-\varepsilon, \varepsilon)$ in \mathbb{R} for some $\varepsilon > 0$. But any interval $(-\varepsilon, \varepsilon)$ of non-zero length contains infinitely many rational numbers, hence $\mathbb{Q} \cap U$ is infinite and not $\{0\}$. This contradiction shows that our assumption, " \mathbb{Q} is discrete", was false.

3. Let $A \subseteq \mathbb{Q}$ be a non-empty connected set. The inclusion map $in \colon \mathbb{Q} \to \mathbb{R}$ is continuous by Proposition 2.7, so in(A) is an interval in \mathbb{R} by Proposition 5.3. Yet in(A) = A, and non-empty intervals in \mathbb{R} which consist entirely of rational points are singletons (every interval of non-zero length will contain irrationals). We have proved that A is a singleton.

References for the exercise sheet

E7.1 is an enhanced version of [Armstrong, Example 3 in Section 3.5].