
Week 7

Connected components.
Path-connectedness. Closure and interior
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We continue to discuss connectedness.

Terminology.

We say “𝐴 is a connected set in 𝑋” or “a connected subset of 𝑋” to mean
that 𝐴 is a subset of a topological space 𝑋 such that 𝐴, viewed with the subspace
topology, is connected.

Theorem 7.1: a continuous image of a connected space is connected.

If 𝑋 is a connected topological space and 𝑓∶ 𝑋 → 𝑌 is continuous, then 𝑓(𝑋) is a
connected set in 𝑌.

Proof. Denote 𝑍 = 𝑓(𝑋). To prove that 𝑍 is connected using Proposition 5.3(ii), we need
to assume that ℎ∶ 𝑍 → ℝ is a continuous function, and to show that ℎ(𝑍) is an interval
in ℝ. Considering the composite function ℎ∘𝑓∶ 𝑋

𝑓
−→ 𝑓(𝑋) = 𝑍

ℎ
−→ ℝ which is continuous

by Proposition 2.6, one has ℎ(𝑍) = (ℎ ∘ 𝑓)(𝑋). By Proposition 5.3(ii), (ℎ ∘ 𝑓)(𝑋) ⊆ ℝ is
an interval. We have shown that ℎ(𝑍) is an interval, as required.
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Remark (not made in the lecture): strictly speaking, in the proof we replaced the function
𝑓∶ 𝑋 → 𝑌 by the function 𝑓∶ 𝑋 → 𝑍 = 𝑓(𝑋), which is known as restricting the
codomain. We have to explain why the restricted-codomain function 𝑋

𝑓
−→ 𝑍 is still

continuous. But this is easy: if 𝑉 ⊆ 𝑍 is a set open in 𝑍, then 𝑉 can be written as 𝑍 ∩𝑈
where 𝑈 is open in 𝑌. One has 𝑓−1(𝑉 ) = 𝑓−1(𝑍 ∩ 𝑈). The preimage of the intersection
is the intersection of preimages, so this equals 𝑓−1(𝑍)∩𝑓−1(𝑈) = 𝑋∩𝑓−1(𝑈) = 𝑓−1(𝑈)
which is open in 𝑋 as 𝑋

𝑓
−→ 𝑌 is given to be continuous. This shows that 𝑋

𝑓
−→ 𝑍 is

continuous.

Corollary.

Connectedness is a topological property.

Proof. Replace the word “compact” with the word “connected” in the proof of the Corol-
lary to Theorem 4.2.

Connected components

A topological space may be disconnected, yet it is always made of connected “pieces” called
connected components. To define these, we recall the notion of equivalence relation.

Notation.

A relation on a set 𝑋 is any function ∼∶ 𝑋 × 𝑋 → {True, False}. We use infix
notation for relations, writing “∼ (𝑥, 𝑦) = True” as 𝑥 ∼ 𝑦 and “∼ (𝑥, 𝑦) = False”
as 𝑥 ≁ 𝑦.

We have already verified the following definition for the relation “is homeomorphic to”
on the class of all topological spaces. (Strictly speaking, this class is not a set, but we
are going to ignore categorical subtleties here.) It is worth restating the definition more
formally.
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Definition: equivalence relation, equivalence class.

An equivalence relation relation on a set 𝑋 is a relation ∼ such that ∼ is
• reflexive: ∀𝑥 ∈ 𝑋, 𝑥 ∼ 𝑥;
• symmetric: ∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ∼ 𝑦 ⇒ 𝑦 ∼ 𝑥;
• transitive: ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, (𝑥 ∼ 𝑦) ∧ (𝑦 ∼ 𝑧) ⇒ 𝑥 ∼ 𝑧.

Suppose the above holds. For each 𝑥 ∈ 𝑋, the subset

[𝑥] = {𝑦 ∈ 𝑋 ∶ 𝑥 ∼ 𝑦}

of 𝑋 is called the equivalence class of 𝑥.

We now introduce, on any topological space, an equivalence relation arising from connect-
edness.

Proposition 7.2: equivalence relation ∼ given by connectedness.

Let𝑋 be a topological space. For 𝑥, 𝑦 ∈ 𝑋, let 𝑥 ∼ 𝑦 mean “there exists a connected
set 𝐴 ⊆ 𝑋 such that 𝑥, 𝑦 ∈ 𝐴”. Then ∼ is an equivalence relation on 𝑋.

Proof. We prove that ∼ is reflexive: let 𝑥 ∈ 𝑋. Put 𝐴 = {𝑥}. Then 𝐴 is a connected
set: since 𝐴 consists of only one point, 𝐴 cannot be written as a union of two disjoint
non-empty sets open in 𝐴. Since 𝑥, 𝑥 ∈ 𝐴, we have 𝑥 ∼ 𝑥 by definition of ∼.

We prove that ∼ is symmetric: assume that 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ∼ 𝑦. Then there exists a
connected set 𝐴 ⊆ 𝑋 such that 𝑥, 𝑦 ∈ 𝐴. The same can be written as 𝑦, 𝑥 ∈ 𝐴, so 𝑦 ∼ 𝑥
by definition of ∼.

We prove that ∼ is transitive: assume that 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧. Then 𝑥, 𝑦 ∈ 𝐴
and 𝑦, 𝑧 ∈ 𝐵 where 𝐴 and 𝐵 are connected subsets of 𝑋. Note that 𝑦 ∈ 𝐴 ∩ 𝐵 means
that 𝐴∩𝐵 ≠ ∅, so by Lemma 7.3 below, the set 𝐴∪𝐵 is connected. Since 𝑥, 𝑧 ∈ 𝐴∪𝐵,
we have 𝑥 ∼ 𝑧 by definition of ∼.

Here is the lemma used in the proof of transitivity of ∼.
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Lemma 7.3.

If 𝐴, 𝐵 are connected subsets of 𝑋, 𝐴∩𝐵 ≠ ∅, then the union 𝐴∪𝐵 is connected.

More generally, if {𝐴𝛼 ∶ 𝛼 ∈ 𝐼} is a collection of connected subsets of 𝑋 such that
⋂𝛼∈𝐼 𝐴𝛼 ≠ ∅, then the union ⋃𝛼∈𝐼 𝐴𝛼 is connected.

Proof of the Lemma. Pick a point 𝑦 ∈ 𝐴 ∩ 𝐵. We will use Proposition 5.3(iii) to show
that 𝐴 ∪ 𝐵 is connected.

Let 𝑔∶ 𝐴 ∪ 𝐵 → {0, 1} be any continuous function from 𝐴 ∪ 𝐵 to the discrete two-
point space. The restriction 𝑔|𝐴 ∶ 𝐴 → {0, 1} is a continuous function on 𝐴: indeed,
𝑔|𝐴 = 𝑔 ∘ in𝐴, the inclusion map in𝐴 is continuous by Proposition 2.7, and the com-
position of continuous maps is continuous by Proposition 2.6. Since 𝐴 is connected, by
Proposition 5.3(iii) the function 𝑔|𝐴 is constant on 𝐴: all of its values on 𝐴 are equal to
𝑔(𝑦), that is, 𝑔(𝐴) = {𝑔(𝑦)}.

In the same way, 𝑔(𝐵) = {𝑔(𝑦)}. But then 𝑔(𝐴 ∪ 𝐵) = 𝑔(𝐴) ∪ 𝑔(𝐵) = {𝑔(𝑦)}. We have
proved that 𝑔 is constant. This shows that 𝐴 ∪ 𝐵 is connected, by Proposition 5.3(iii).

The “more generally” part is proved similarly (not in class) and is left to the student.

The equivalence classes defined by ∼ have a special name:

Definition: connected components.

Let 𝑥 ∼ 𝑦 be the relation “∃𝐴 ⊆ 𝑋: 𝑥, 𝑦 ∈ 𝐴, 𝐴 is connected” on a topological
space 𝑋. The equivalence classes defined by ∼ are called connected components
of 𝑋.

Recall that a partition of a set 𝑋 is a collection of subsets of 𝑋 which are non-empty,
disjoint, and cover 𝑋. This is detailed in the following Claim, which is a well-known result
from Mathematical Foundations.



Connected components. Path-connectedness. Closure and interior 82

Claim: equivalence classes form a partition.

If ∼ is an equivalence relation on a set 𝑋, the collection of equivalence classes [𝑥],
where 𝑥 ∈ 𝑋, forms a partition of the set 𝑋. That is,

• [𝑥] is non-empty for all 𝑥;
• either [𝑥] = [𝑦] (equality of sets) or [𝑥] ∩ [𝑦] = ∅, for all 𝑥, 𝑦 ∈ 𝑋;
• ⋃𝑥∈𝑋[𝑥] = 𝑋.

Corollary.

Connected components of a topological space 𝑋 form a partition of 𝑋. That is, 𝑋
is a union of disjoint connected components.

The words “connected component” suggest that the set we are talking about is connected.
This is indeed the case. The following result was not proved in class.

Lemma 7.4.

Each connected component of a topological space 𝑋 is a connected subset of 𝑋.

Sketch of proof. The connected component [𝑥] of a point 𝑥 ∈ 𝑋 is the union of all
connected sets 𝐴 in 𝑋 such that 𝑥 ∈ 𝐴. The intersection of all such sets contains 𝑥,
hence their union is connected by the second statement of Lemma 7.3.

Proposition 7.5: homeomorphism preserves connected components.

If ℎ∶ 𝑋
∼
−→ 𝑌 is a homeomorphism, ℎ maps connected components of 𝑋 to connected

components of 𝑌.

Proof (not given in class). Let 𝑥 ∈ 𝑋. We denote the connected component of 𝑥 by [𝑥].
Denote 𝑦 = ℎ(𝑥). Since ℎ is continuous, by Theorem 7.1 ℎ([𝑥]) is a connected subset of
𝑌; it contains 𝑦, and so ℎ([𝑥]) ⊆ [𝑦].

Now, considering the continuous function ℎ−1, the same argument shows that ℎ−1([𝑦]) ⊆
[𝑥], therefore [𝑦] ⊆ ℎ([𝑥]). The two inclusions mean that ℎ([𝑥]) = [𝑦], as claimed.
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Corollary.

The number of connected components (or the cardinality of the set of connected
components) is a topological property.

Idea of proof (not given in class). The Proposition implies that a homeomorphism ℎ∶ 𝑋
∼
−→

𝑌 defines a map {connected components of 𝑋} → {connected components of 𝑌 }.

It is easy to see that this map must be a bijection, because ℎ is. Hence the set of connected
components of 𝑋 must be equipotent with the set of connected components of any space
homeomorphic to 𝑋.

Path-connectedness

We can see from Proposition 5.3 that connectedness of a topological space 𝑋 can be
characterised in terms of functions from 𝑋 to other spaces such as ℝ or {0, 1}. We will
now consider a different topological property, expressed in terms of functions to 𝑋.

Definition: path; points joined by a path.

A path in a topological space 𝑋 is a a continuous function 𝜙∶ [0, 1] → 𝑋. Points
𝑥, 𝑦 ∈ 𝑋 are joined by a path if there exists a path 𝜙 with 𝜙(0) = 𝑥 and 𝜙(1) = 𝑦.

Here the closed interval [0, 1] is considered with the Euclidean topology. A path should be
thought of as a continuous curve in 𝑋 which starts at the point 𝑥 and ends at the point
𝑦, see Figure 7.1 for an illustration.

Definition: a path-connected space.

A space 𝑋 is path-connected if any two points of 𝑋 are joined by a path.
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𝑋

𝑥

𝑦

[AI]

Figure 7.1: “points 𝑥 and 𝑦 are joined by a path”

Claim.

The continuous image of a path-connected space is path-connected. In particular,
path-connectedness is a topological property.

Proof (not given in class). Suppose that 𝑋 is a path-connected space and 𝑓∶ 𝑋 → 𝑌 is
continuous. To show that 𝑍 = 𝑓(𝑋) is path-connected, we pick 𝑎, 𝑏 ∈ 𝑍. We have
𝑎 = 𝑓(𝑥) and 𝑏 = 𝑓(𝑦) for some 𝑥, 𝑦 ∈ 𝑋. Now let 𝜙∶ [0, 1] → 𝑋 be a path with
𝜙(0) = 𝑥 and 𝜙(1) = 𝑦.

The function 𝑓 ∘𝜙, where 𝑍 is taken as the codomain, is continuous, (𝑓 ∘𝜙)(0) = 𝑓(𝑥) = 𝑎
and (𝑓 ∘ 𝜙)(1) = 𝑓(𝑦) = 𝑏. Thus, 𝑓 ∘ 𝜙 is a path joining 𝑎 and 𝑏 in 𝑍.

Proposition 7.6: path-connected implies connected.

If a topological space 𝑋 is path-connected, then 𝑋 is connected.

Proof (not given in class). Assume 𝑋 is path-connected, and fix a point 𝑥 ∈ 𝑋. For any
𝑦 ∈ 𝑋, let 𝜙 be a path joining 𝑥 and 𝑦. Then 𝑥 and 𝑦 lie in the set 𝜙([0, 1]) which is a
connected set, being a continuous image of the connected interval [0, 1]. Hence 𝑦 lies in
the connected component [𝑥] of 𝑥. Since 𝑦 was arbitrary, this shows that 𝑋 consists of
only one connected component, and so 𝑋 is connected by Lemma 7.4.
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Example.

Show that the Euclidean line ℝ is not homeomorphic to the Euclidean plane ℝ2.

Solution (not given in class): assume for contradiction that 𝑓∶ ℝ2 → ℝ is a homeomor-
phism. The set ℝ2 ∖ {𝑂} is path-connected, see Figure 7.2: two points can be joined by
a straight line segment or, if the segment contains 𝑂, by an arc; segments and arcs are
paths. Since 𝑓 is injective, we have 𝑓(ℝ2 ∖{𝑂}) = ℝ∖{𝑓(𝑂)}. Yet by Proposition 5.3(ii),
a continuous image of a connected space must be an interval in ℝ, which ℝ ∖ {point} is
not. This contradiction shows that a homeomorphism ℝ2 → ℝ does not exist.

x1

y1

x2 y2O

Figure 7.2: the punctured plane ℝ2 ∖ {𝑂} is path-connected

Closure and interior

We now extend two constructions, introduced in MATH21111 Metric Spaces, to general
topological spaces.

Definition: closure and interior of a set.

Let 𝑋 be a topological space and 𝐴 be a subset of 𝑋. The closure of 𝐴 in 𝑋 is

𝐴 = ⋂{𝐹 ∶ 𝐴 ⊆ 𝐹, 𝐹 is closed in 𝑋}.
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The interior of 𝐴 in 𝑋 is

𝐴∘ = ⋃{𝑈 ∶ 𝑈 ⊆ 𝐴, 𝑈 is open in 𝑋}.

In the next result, the smallest set in some collection of sets is the set (if it exists) which
is contained in all other sets of the collection. Likewise, the largest set in a collection is
the set which contains all other sets of the collection.

Claim 7.7.

𝐴 is the smallest closed subset of 𝑋 which contains 𝐴.
𝐴∘ is the largest open subset of 𝑋 contained in 𝐴.

Proof. Let us denote by 𝒞𝐴 the collection {𝐹 ∶ 𝐴 ⊆ 𝐹, 𝐹 is closed in 𝑋}. Then 𝐴 is
defined as ⋂𝒞𝐴. We need to prove statements 1,2,3 as follows:

1. 𝐴 is closed in 𝑋. Indeed, 𝒞𝐴 is a collection of closed sets, hence by Proposi-
tion 2.4(b), the intersection 𝐴 of 𝒞𝐴 is closed.

2. 𝐴 contains 𝐴. Indeed, each set in 𝒞𝐴 contains 𝐴, and so ⋂𝒞𝐴 also contains 𝐴.
3. 𝐴 ⊆ 𝐺 for all 𝐺 ∈ 𝒞𝐴. Indeed, 𝐴 = ⋂𝒞𝐴 = 𝐺∩⋂{𝐹 ∈ 𝒞𝐴 ∶ 𝐹 ≠ 𝐺}. Since 𝐴 is

the intersection of 𝐺 with some set, we have 𝐴 ⊆ 𝐺, as claimed.

The claim about 𝐴∘ can be deduced from 1,2,3 above using the De Morgan laws 1.3: to
do that, one shows that 𝐴∘ = 𝑋 ∖ (𝑋 ∖ 𝐴). I leave this to the student.

Corollary.

Let 𝐴 be a subset of a topological space 𝑋. Then
(1) 𝐴 is a closed set ⟺ 𝐴 = 𝐴;
(2) 𝐴 is an open set ⟺ 𝐴 = 𝐴∘.

Proof of Corollary. (1) ⇒: assume 𝐴 is closed in 𝑋. Then 𝐴 is a closed set which
contains 𝐴. By Claim 7.7, 𝐴 is the smallest such set, so 𝐴 ⊆ 𝐴. On the other hand, also
by Claim 7.7, 𝐴 ⊇ 𝐴. The two inclusions show that 𝐴 = 𝐴.
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𝑥

𝑦

𝑧𝑄

Figure 7.3: 𝑧 is a limit point for the half-open square 𝑄 = {−1 ≤ 𝑥 < 1, −1 ≤ 𝑦 < 1};
𝑧 ∉ 𝑄 but 𝑧 ∈ 𝑄

⇐: assume 𝐴 = 𝐴. By Claim 7.7, 𝐴 is closed. Hence 𝐴 is closed.

Part (2) is left to the student.

Closure as the set of “limit points”

We will now give another description of the closure of a set, based on the following:

Definition: limit point.

Let 𝐴 be a subset of a topological space 𝑋. A point 𝑧 ∈ 𝑋 is a limit point for 𝐴 if
𝑈 ∩ 𝐴 ≠ ∅ for every open neighbourhood 𝑈 of 𝑧.
In other words, a point, whose every open neighbourhood meets 𝐴, is a limit
point for 𝐴.

It is obvious that if 𝑧 ∈ 𝐴, then 𝑧 is a limit point for 𝐴. The converse is false in general,
see Figure 7.3 for illustration.
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Proposition 7.8: closure equals the set of limit points.

𝐴 = {𝑧 ∈ 𝑋 ∶ 𝑧 is a limit point for 𝐴}.

Proof. We will prove: 𝑦 ∉ 𝐴 ⟺ 𝑦 is not a limit point for 𝐴.

⇒: assume 𝑦 ∉ 𝐴. Then 𝑦 belongs to the set 𝑈 = 𝑋 ∖ 𝐴. By Claim 7.7, 𝑈 is open (as
𝐴 is closed) and 𝑈 does not meet 𝐴 (as 𝐴 ⊆ 𝐴). Hence, by definition of a limit point, 𝑦
is not a limit point for 𝐴, as claimed.

⇐: assume 𝑦 is not a limit point for 𝐴, so that there is open 𝑈 ∋ 𝑦 with 𝑈 ∩ 𝐴 = ∅.
Then 𝑋 ∖ 𝑈 is closed, and 𝐴 ⊆ 𝑋 ∖ 𝑈. By Claim 7.7, 𝐴 ⊆ 𝑋 ∖ 𝑈, and since 𝑦 ∈ 𝑈, we
conclude that 𝑦 ∉ 𝐴.

We note that our definition of a limit point is not in terms of sequences. We will now
define limits of sequences, in order to see the connection with Real Analysis and Metric
Spaces.

Definition: convergence.

Let (𝑥𝑛)𝑛∈ℕ be a sequence of points of a topological space 𝑋. We say that 𝑥𝑛

converges to a point 𝑥 ∈ 𝑋, and write 𝑥𝑛 → 𝑥 as 𝑛 → ∞, if for any open
neighbourhood 𝑈 of 𝑥 there exists 𝑁 ∈ ℕ such that the tail 𝑥𝑁+1, 𝑥𝑁+2,… of the
sequence (𝑥𝑛) lies in 𝑈.

A sequence of points in a topological space may not converge to any point at all, converge
to a single point, or converge to more than one point. This last option prevent us from
saying “the limit of a sequence” because there might be more than one limit! This
undesirable situation cannot occur in Hausdorff spaces:

Proposition 7.9: in Hausdorff, limit is unique if it exists.

Let (𝑥𝑛)𝑛∈ℕ be a sequence in a Hausdorff space 𝑋, such that 𝑥𝑛 → 𝑥 and 𝑥𝑛 → 𝑦
as 𝑛 → ∞. Then 𝑥 = 𝑦.
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Proof (not given in class). Assume for contradiction that 𝑥 ≠ 𝑦. Since 𝑋 is Hausdorff,
𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 where 𝑈, 𝑉 are disjoint open sets.

Since 𝑥𝑛 → 𝑥, there exists 𝑀 ∈ ℕ such that 𝑥𝑀, 𝑥𝑀+1, ⋯ ∈ 𝑈. Likewise, there exists
𝑁 ∈ ℕ such that 𝑥𝑁, 𝑥𝑁+1, ⋯ ∈ 𝑉. But then 𝑈 and 𝑉 are not disjoint, because both sets
contain 𝑥max(𝑀,𝑁)+1. This contradiction shows that the assumption 𝑥 ≠ 𝑦 was false.

Let 𝐴 be a subset of a topological space 𝑋, and let 𝑥 ∈ 𝑋. What is the relationship
between the two statements,

(a) 𝑥 ∈ 𝐴;
(b) there exists a sequence (𝑥𝑛)𝑛∈ℕ such that 𝑥𝑛 ∈ 𝐴 for all 𝑛, and 𝑥𝑛 → 𝑥 as 𝑛 → ∞.

In metric spaces, (a) and (b) are equivalent. In general topological spaces, (b) implies (a)
but not the other way round. It turns out that the right condition for (a) and (b) to be
equivalent is the following.

Definition: a first-countable space.

A topological space 𝑋 is first countable if every point 𝑥 ∈ 𝑋 has a countable
system 𝑈1(𝑥), 𝑈2(𝑥),… of open neighbourhoods, such that the collection {𝑈𝑛(𝑥) ∶
𝑛 ≥ 1, 𝑥 ∈ 𝑋} is a base of topology on 𝑋.

All metric spaces are first countable: just put 𝑈𝑛(𝑥) = 𝐵 1
𝑛
(𝑥).

We omit the proof of the following fact, which the students may wish to attempt as an
exercise or look up in the literature.

Claim 7.10.

If 𝑋 is a first-countable topological space and 𝐴 ⊆ 𝑋, then 𝑥 ∈ 𝐴 iff there is a
sequence (𝑥𝑛)𝑛∈ℕ contained in 𝐴 which converges to 𝑥. (In particular, this is true
for all metrisable topologies.)
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The boundary of a set. Dense sets

We conclude the chapter with two definition which are important for normed, Hilbert and
Banach spaces.

Definition: the boundary of a set.

Let 𝑋 be a topological space and 𝐴 ⊆ 𝑋. The boundary of 𝐴 is the set 𝜕𝐴 =
𝐴 ∩ (𝑋 ∖ 𝐴).

Combining this definition with Proposition 7.8, we arrive at the following equivalent de-
scription of the boundary of 𝐴:

𝜕𝐴 is the set of points 𝑧 ∈ 𝑋 such that every open neighbourhood of 𝑧
contains a point from 𝐴 and a point not from 𝐴.

In Euclidean spaces, the notion of the boundary is quite intuitive. For example, the
boundary of the half-open square 𝑄 = {(𝑥, 𝑦) ∶ −1 ≤ 𝑥 < 1, −1 ≤ 𝑦 < 1} in the plane
is exactly the “border”, i.e., the union of the four sides, of the square: 𝜕𝑄 = {(𝑥, 𝑦) ∶
max(|𝑥|, |𝑦|) = 1}, see Figure 7.4 for illustration.

Definition: dense set.

Let 𝑋 be a topological space. A subset 𝐴 of 𝑋 is dense in 𝑋 if 𝐴 = 𝑋.

Of course, 𝑋 is always dense in 𝑋. Yet smaller (e.g., countable) dense sets, if they exist,
are usually more interesting. The following is a standard example from Metric Spaces:

Example: ℚ is dense in ℝ.

Show that the set ℚ of rational numbers is dense in the Euclidean line ℝ.

Solution (not given in class): let 𝑧 ∈ ℝ be arbitrary. We need to show that 𝑧 ∈ ℚ, which
by Proposition 7.8 means that every open neighbourhood 𝑈 of 𝑧 meets ℚ. Indeed, by
definition of “open” in Euclidean topology, 𝑈 contains an open interval (𝑧 − 𝜀, 𝑧 + 𝜀) for
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𝑥

𝑦

𝑧𝑄

𝑥

𝑦

𝜕𝑄

𝑧

Figure 7.4: the boundary of the half-open square 𝑄 = {−1 ≤ 𝑥 < 1, −1 ≤ 𝑦 < 1} is the
“border” of the square. Each open neighbourhood of a point on 𝜕𝑄 intersects both 𝑄
and ℝ2 ∖ 𝑄. Non-boundary points have a neighbourhood fully in 𝑄 or fully in ℝ2 ∖ 𝑄

some 𝜀 > 0, and it is a known fact that every interval of positive length in ℝ contains
rational points.

The concepts of “connected” and “dense” lead to a well-known counterexample in topol-
ogy, which we will now consider.

The rest of this chapter was not covered in class.

Lemma 7.11.

If a topological space 𝑋 has a connected dense subset, then 𝑋 is connected.

Proof. Let 𝐴 ⊆ 𝑋 be such that 𝐴 = 𝑋. Assume that 𝑋 is disconnected: that is,
𝑋 = 𝑈 ∪ 𝑉 where 𝑈, 𝑉 are disjoint non-empty sets open in 𝑋.

Take 𝑥 ∈ 𝑈, so that 𝑈 is an open neighborhood of 𝑥. Since 𝑥 ∈ 𝑋 = 𝐴, by Proposition 7.8
we must have 𝑈 ∩ 𝐴 ≠ ∅. Taking 𝑦 ∈ 𝑉, we similarly argue that 𝑉 ∩ 𝐴 ≠ ∅. Then
𝐴 = (𝑈 ∩ 𝐴) ∪ (𝑉 ∩ 𝐴) is a disjoint union of non-empty sets, open in 𝐴; hence 𝐴 is
disconnected. The Lemma follows by contrapositive.
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1
𝑥

1
𝑥 sin 1

𝑥

Figure 7.5: The (modified) topologist’s sine curve

Example: Topologist’s sine curve.

Let 𝑋 be the subet {(𝑥, 𝑦) ∶ 𝑥 = 0 or 𝑥 > 0, 𝑦 = 1
𝑥 sin 1

𝑥} of the Euclidean plane
ℝ2, see Figure 7.5. Show that 𝑋 is connected but not path-connected.

Solution. Let 𝑋+ = {(𝑥, 𝑦) ∶ 𝑥 > 0, 𝑦 = 1
𝑥 sin 1

𝑥} be the intersection of 𝑋 with the
positive half-plane {𝑥 > 0}. Then 𝑋+ is the image of (0,+∞) under the continuous
function 𝑥 ↦ (𝑥, 1

𝑥 sin 1
𝑥) from (0,+∞) to ℝ2. Since the interval (0,+∞) is connected,

and a continuous image of a connected space is connected (Theorem 7.1), 𝑋+ is connected.

It is clear that every point of the vertical axis {𝑥 = 0} is a limit point of 𝑋+, thus 𝑋 = 𝑋+,
and by Lemma 7.11, 𝑋 is also connected.

Yet 𝑋 is not path-connected. Indeed, assume for contradiction that there is a path
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𝜙∶ [0, 1] → 𝑋 such that 𝜙(0) = (0, 0) and 𝜙(1) = (1, sin 1); here (1, sin 1) is a point
of 𝑋. Denote by 𝑝 the projection (𝑥, 𝑦) ↦ 𝑥 which is continuous. Then 𝑓 = 𝑝 ∘ 𝜙 is a
continuous function [0, 1] → [0,+∞).

Since [0, 1] is connected, by Proposition 5.3(ii) 𝑓([0, 1]) must be a real interval which
contains 𝑓(0) = 0 and 𝑓(1) = 1. In particular, 𝑓([0, 1]) contains (0, 1], which means that
𝜙([0, 1]) contains a point of the form (𝑡, 𝑦) for all 𝑡 ∈ (0, 1]. Such a point of 𝑋 can only be
(𝑡, 1𝑡 sin

1
𝑡 ). The 𝑦-coordinates of all such points are unbounded in ℝ, yet 𝜙([0, 1]) must

be compact by Theorem 4.2, hence bounded by Proposition 5.1. This contradiction shows
that a path joining the points (0, 0) and (1, sin 1) inside 𝑋 does not exist.

References for the week 7 notes

Theorem 7.1, a continuous image of a connected space is connected, is [Sutherland, Proposition
12.11], and the Corollary (connectedness is a topological property) is [Sutherland, Corollary 12.12].

Topology textbooks, such as [Sutherland] and [Armstrong], assume knowledge of equivalence re-
lations. This topic is covered in introductory mathematics literature: for example, [Smith] defines
an equivalence relation (Definition 1.6), partition (Def.1.9), equivalence class [𝑥] (Def.1.10), and
proves our Claim that equivalence classes form a partition [Smith, Proposition 1.4].

Figure 7.1 is a TikZ diagram generated with the help of OpenAI ChatGPT.

Definitions of two points joined by a path and a path-connected space are [Sutherland, Definitions
12.20 and 12.21]. Proposition 7.6, path-connected implies connected, is [Sutherland, Proposition
12.23], but we give a shorter proof. The example showing that ℝ is not homeomorphic to the ℝ2

is given in the book before [Sutherland, Exercise 12.1].

A limit point is called “a point of closure” in [Sutherland, Definition 9.6], and 𝐴 is defined as
the set of points of closure for 𝐴. Under this approach, our Proposition 7.8 is just the definition,
yet our definition of 𝐴 as the intersection of a family of closed sets becomes a result which needs
proof; see [Sutherland, Proposition 9.10].

Proposition 7.9, in Hausdorff, limit is unique if it exists, is [Sutherland, Proposition 11.4].

https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/1r887gn/alma998098394401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983578625001631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983578625001631
https://chatgpt.com
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
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Theorem 2.31 in the 2023/24 notes for MATH21111 Metric Spaces says: 𝑦 lies in 𝐴 iff there exists
a sequence (𝑦𝑛)𝑛≥1 in 𝐴 such that 𝑦𝑛 → 𝑦 as 𝑛 → ∞.

First-countable spaces are defined in [Willard, Definition 10.3]. Claim 7.10 is [Willard, Thm 10.4].

The topologist’s sine curve is a well-known example of a connected space which is not path-
connected. It is given in [Counterexamples in Topology, 118], although we slightly modify it
multiplying sin 1

𝑥 by 1
𝑥 to arrive at an easier contradiction via unboundedness. A similar example

under the same name is [Willard, Example 27.3a].

https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma9959299010001631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma9959299010001631
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