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Metric spaces form a subclass of Hausdorff topological spaces. We can obtain further
results about compact sets in this subclass. Recall the following from MATH21111 Metric
spaces:

Definition: bounded set.

A subset 𝐴 of a metric space (𝑋, 𝑑) is bounded if 𝐴 ⊆ 𝐵𝑟(𝑥) for some 𝑥 ∈ 𝑋,
𝑟 > 0.

We reproduce a result from MATH21111, but with a new proof which refers to the Haus-
dorff property:

Proposition 5.1.

In a metric space, a compact set is closed and bounded.

Proof. Let 𝐾 be a compact subset of a metric space 𝑋. The metric topology on 𝑋 is
Hausdorff, Proposition 3.2, and compacts are closed in Hausdorff spaces, Proposition 4.4,
so 𝐾 is closed in 𝑋.
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To show that 𝐾 is bounded, fix any point 𝑥 of 𝑋 and consider the collection 𝒞 =
{𝐵𝑟(𝑥)}𝑟∈ℝ>0

of open balls. Clearly, ⋃𝒞 = 𝑋 and so 𝒞 covers 𝐾. By Criterion of
compactness 4.1, there exists a finite subcollection {𝐵𝑟1(𝑥),… ,𝐵𝑟𝑛(𝑥)} of 𝒞 which still
covers 𝐾: that is,

𝐾 ⊆ 𝐵𝑟1(𝑥) ∪ ⋯ ∪ 𝐵𝑟𝑛(𝑥) = 𝐵𝑅(𝑥)

where 𝑅 = max(𝑟1,… , 𝑟𝑛). We have shown that 𝐾 is a subset of an open ball, that is,
𝐾 is bounded.

Remark: it is not true that every closed and bounded subset of a metric space is com-
pact. An easy counterexample is given by 𝑋 endowed with a discrete metric, 𝑑(𝑥, 𝑦) =
⎧{
⎨{⎩

0, 𝑥 = 𝑦,

1, 𝑥 ≠ 𝑦.
The metric topology defined by 𝑑 on 𝑋 is the discrete topology which is

not compact is 𝑋 is infinite (exercise).

A more conceptual example of a non-compact closed and bounded set in a metric space
is the closed unit ball of an infinite-dimensional Hilbert, or Banach, space. This will be
discussed in the second part of MATH31010, Functional Analysis.

The next result gives us a highly non-trivial example of a compact set in a Euclidean space.

Theorem 5.2: the Heine-Borel Lemma.

The closed bounded interval [0, 1] is a compact subset of the Euclidean line ℝ.

Proof. There are several standard proofs of this result; we will present the proof by bisec-
tion, or halving the interval. Alternative proofs can be found in the literature.

Assume for contradiction that there exists a collection 𝒞 of open subsets of ℝ such that
[0, 1] is covered by 𝒞, yet is not covered by any finite subcollection of 𝒞. Then at least
one of the two halves, the closed subintervals

[0, 12 ] and [12 , 1]
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of [0, 1], has no finite subcover in 𝒞: indeed, if [0, 12 ] were covered by finite 𝒞1 ⊆ 𝒞, and
[12 , 1], by finite 𝒞2 ⊆ 𝒞, then the whole of [0, 1] would be covered by 𝒞1 ∪𝒞2 which is a
finite subcollection of 𝒞. We therefore let

[𝑎1, 𝑏1], where 0 ≤ 𝑎1 ≤ 𝑏1 ≤ 1 and 𝑏1 − 𝑎1 = 1
2 ,

denote one of the halves of [0, 1] which is not covered by any finite subcollection of 𝒞.
We can now apply the same argument to the closed bounded interval [𝑎1, 𝑏1] and obtain

[𝑎2, 𝑏2], where 𝑎1 ≤ 𝑎2 ≤ 𝑏2 ≤ 𝑏1 and 𝑏2 − 𝑎2 = 1
22 ,

one of the halves of [𝑎1, 𝑏1] which is not covered by any finite subcollection of 𝒞. Contin-
uing this process, we will construct, for all 𝑛 ≥ 1, the interval

[𝑎𝑛, 𝑏𝑛], where 𝑎𝑛−1 ≤ 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑏𝑛−1 and 𝑏𝑛 − 𝑎𝑛 = 1
2𝑛 ,

which is not covered by any finite subcollection of 𝒞.

Observe that the sequence 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ … is increasing and bounded, as all its
terms lie in [0, 1]. By a result from Year 1 Foundations of Mathematics course, such a
sequence converges to a limit ℓ, and moreover ℓ ∈ [0, 1], 𝑎𝑛 ≤ ℓ for all 𝑛. Note also that
lim𝑛→∞ 𝑏𝑛 = lim𝑛→∞ 𝑎𝑛 + 1

2𝑛 = ℓ and ℓ ≤ 𝑏𝑛 for all 𝑛.

The point ℓ of [0, 1] must be covered by some set 𝑈 ∈ 𝒞. Since 𝑈 is open, 𝑈 ⊇ (ℓ−𝜀, ℓ+𝜀)
for some 𝜀 > 0. Take 𝑛 such that 1

2𝑛 < 𝜀. Then ℓ − 𝜀 < ℓ − 1
2𝑛 ≤ 𝑎𝑛 ≤ ℓ and so

𝑎𝑛 ∈ (ℓ − 𝜀, ℓ + 𝜀). Similarly, 𝑏𝑛 ∈ (ℓ − 𝜀, ℓ + 𝜀), see Figure 5.1 for illustration.

Thus, the interval [𝑎𝑛, 𝑏𝑛] has a finite subcover in 𝒞 — in fact, a cover by just one
set, 𝑈 ∈ 𝒞 — contradicting the construction of [𝑎𝑛, 𝑏𝑛]. This contradiction proves the
Theorem.
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ℓ − 𝜀

𝑎𝑛 𝑏𝑛

ℓ ℓ + 𝜀

⊆ 𝑈 ∈ 𝒞

Figure 5.1: the contradiction arrived at in the proof of the Heine-Borel Lemma

Remark: it follows from the Heine-Borel Lemma that in every Euclidean space ℝ𝑛, a set is
compact iff it is closed and bounded. This is because every such set is a subset of a cube
of the form [−𝑀,𝑀]𝑛 ⊆ ℝ𝑛. The closed bounded cube can be shown to be compact by
adapting the subdivision argument in Theorem 5.2.

We will, however, not extend the subdivision argument to 𝑛 dimensions: in a short while,
compactness of [−𝑀,𝑀]𝑛 will follow from the (baby) Tychonoff theorem which will say
that a direct product of 𝑛 compact spaces is compact.

Connectedness

So far, we have considered two topological properties: the Hausdorff property and com-
pactness. The third topological property, and the final one that we will study in this course,
is connectedness.

Definition: connected.

A topological space 𝑋 is disconnected if

∃𝑈, 𝑉 open in 𝑋: 𝑈 ≠ ∅, 𝑉 ≠ ∅, 𝑈 ∩ 𝑉 = ∅, 𝑈 ∪ 𝑉 = 𝑋.

That is, a disconnected space is a disjoint union of two non-empty open sets.

The space 𝑋 is connected if it is not disconnected.

Let us construct two disconnected spaces. We will obtain them as subspaces of the
Euclidean line ℝ:
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Example.

Show that the subspace 𝑋 = (0, 1) ∪ (2, 3) of ℝ is disconnected.

Solution: let 𝑈 be the open interval (0, 1) and 𝑉 be the open interval (2, 3). Then 𝑈 and
𝑉 are disjoint non-empty sets open in 𝑋 whose union is 𝑋. Hence, by definition, 𝑋 is
disconnected.

Example.

Show that the subspace 𝑋 = {0, 1} of ℝ is disconnected.

Solution. Consider the following non-empty disjoint subsets of 𝑋: 𝑈 = {0} and 𝑉 = {1}.
We note that both sets are open in 𝑋. For example, {0} = (−∞, 1)∩𝑋 where (−∞, 1) is
an open subset of ℝ, and so {0} is open in 𝑋 by definition of subspace topology. Similarly,
{1} = (0,+∞) ∩ 𝑋.

We have written 𝑋 as a disjoint union of two non-empty open subsets, so by definition,
𝑋 is disconnected.

Remark. By showing {0} and {1} to be open in {0, 1}, we have proved the following:

Claim.

The subspace {0, 1} of the Euclidean line ℝ has discrete topology.

One can say that the discrete space {0, 1} is the “canonical” example of a disconnected
space. This point of view is supported by the following result.

Proposition 5.3: conditions equivalent to connectedness.

The following are equivalent for a topological space 𝑋:
(i) 𝑋 is connected.
(ii) For all continuous functions 𝑓∶ 𝑋 → ℝ, the image 𝑓(𝑋) is an interval.
(iii) Every continuous function 𝑔∶ 𝑋 → {0, 1} is constant.

Here ℝ has Euclidean topology, and {0, 1} has discrete topology.
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Before proving the Proposition, we formally define “interval”.

Definition: interval.

An interval is a subset 𝐼 of ℝ such that

∀𝑥, 𝑦 ∈ 𝐼, ∀𝑡, 𝑥 < 𝑡 < 𝑦 ⟹ 𝑡 ∈ 𝐼.

Thus, together with any two points, an interval contains all intermediate points.

It is not difficult to establish the following classification of intervals:

Claim: classification of intervals in ℝ.

𝐼 ⊆ ℝ is an interval ⟺ 𝐼 is a set of the form (𝑎, 𝑏), [𝑎, 𝑏), (𝑎, 𝑏], [𝑎, 𝑏], (𝑎,+∞),
[𝑎,+∞), (−∞, 𝑏) or (−∞, 𝑏] for some real 𝑎, 𝑏, or 𝐼 = ℝ.

Remark: the empty subset ∅ of ℝ can be written as (𝑎, 𝑎) and is an interval. Any singleton
{𝑎} ⊆ 𝑅 can be written as [𝑎, 𝑎] and is an interval.

Sketch of proof of the Claim (not given in class). It is clear that every set (𝑎, 𝑏), [𝑎, 𝑏),… ,
ℝ, listed in the claim, is an interval. Conversely, assume that 𝐼 is an interval in ℝ and let
𝑎 = inf 𝐼, 𝑏 = sup 𝐼. If both 𝑎 and 𝑏 are real numbers and not ±∞ and so 𝐼 is non-empty
and bounded, one uses the definition of the “least upper bound” (sup) and the “greatest
lower bound” (inf) to show that (𝑎, 𝑏) ⊆ 𝐼 ⊆ [𝑎, 𝑏], which leaves four possibilities for 𝐼.
The remaining cases when one or both of 𝑎, 𝑏 is infinite are handled similarly. Details are
left to the student.

Proof of Proposition 5.3. Recall for use in the proof that the preimage of intersection is
the intersection of preimages; same for the union and the complement.

(i) ⇒ (ii): to prove the contrapositive, we must assume that there exists a continuous
function 𝑓∶ 𝑋 → ℝ such that 𝑓(𝑋) is not an interval. This means that there are 𝑎, 𝑏 ∈
𝑓(𝑋) and a real number 𝑡 such that 𝑎 < 𝑡 < 𝑏 and 𝑡 ∉ 𝑓(𝑋). Consider

𝑈 = 𝑓−1((−∞, 𝑡)), 𝑉 = 𝑓−1((𝑡, +∞)).
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𝑈

𝑔(𝑈) = {0}

𝑉

𝑔(𝑉 ) = {1}

𝑋

Figure 5.2: defining 𝑔∶ 𝑋 → {0, 1} where 𝑋 is disconnected

The set 𝑈 ⊆ 𝑋 is open in 𝑋 because 𝑈 is the preimage of the set (−∞, 𝑡), open in ℝ,
under a continuous function 𝑓. Furthermore, 𝑈 is not empty, as 𝑓(𝑈) ∋ 𝑎. Similarly, 𝑉 is
open in 𝑋 and not empty; yet 𝑈 ∩ 𝑉 is

𝑓−1((−∞, 𝑡)) ∩ 𝑓−1((𝑡, +∞)) = 𝑓−1((−∞, 𝑡) ∩ (𝑡,+∞)) = 𝑓−1(∅),

so 𝑈 ∩ 𝑉 = ∅ and 𝑈, 𝑉 are disjoint. Finally,

𝑈 ∪ 𝑉 = 𝑓−1(ℝ ∖ {𝑡}) = 𝑋 ∖ 𝑓−1({𝑡}),

yet 𝑡 ∉ 𝑓(𝑋) by assumption, so 𝑓−1(𝑡) = ∅ and 𝑈 ∪ 𝑉 = 𝑋. The construction of 𝑈, 𝑉
shows that 𝑋 is disconnected by definition. We have shown not(ii) ⇒ not(i).

(ii) ⇒ (iii): let 𝑔∶ 𝑋 → {0, 1} be continuous. As in an earlier example, we can view the
discrete set {0, 1} as a subspace of the Euclidean line ℝ. The inclusion map in ∶ {0, 1} → ℝ
is continuous by Proposition 2.7, and so we have a continuous map 𝑋

𝑔
−→ {0, 1}

in
−→ ℝ. By

(ii), the image of this map must be an interval in ℝ; yet this image is a subset of {0, 1},
and such an interval can be at most one point. Thus, 𝑔 must be constant, proving (iii).

(iii) ⇒ (i): to prove the contrapositive, assume that 𝑋 is disconnected, so that 𝑋 = 𝑈 ∪𝑉
where 𝑈, 𝑉 are disjoint non-empty open sets. This allows us to define the following function
(as illustrated in Figure 5.2):

𝑔∶ 𝑋 → {0, 1}, 𝑔(𝑥) =
⎧{
⎨{⎩

0, 𝑥 ∈ 𝑈,

1, 𝑥 ∈ 𝑉 .
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We check that 𝑔 is continuous by calculating the preimage of every open subset of {0, 1}.
There are exactly 4 open subsets of the discrete space {0, 1}, and we have 𝑔−1(∅) = ∅,
𝑔−1({0}) = 𝑈, 𝑔−1({1}) = 𝑉 and 𝑔−1({0, 1}) = 𝑋. In each case, the preimage is an
open subset of 𝑋, so 𝑔 is continuous by definition. We have constructed a non-constant
continuous function 𝑋 → {0, 1}, proving not(i) ⇒ not(iii).

Here is an example where we use the Proposition 5.3 to establish that a space is connected.

Example: interval is connected.

Show that an interval 𝐼 ⊆ ℝ is connected.

Solution: we use condition (ii) from the Proposition. Let 𝑓∶ 𝐼 → ℝ be a continuous
function. To show that 𝑓(𝐼) is an interval, take two points 𝑓(𝑎) and 𝑓(𝑏) of 𝑓(𝐼),
where 𝑎, 𝑏 ∈ 𝐼. By the Intermediate Value Theorem from MATH11121 Mathematical
Foundations and Analysis, all intermediate values between 𝑓(𝑎) and 𝑓(𝑏) belong to the
image 𝑓(𝐼). Thus, by definition of “interval”, 𝑓(𝐼) is an interval. Hence by Proposition 5.3,
𝐼 is connected, as claimed.

References for the week 5 notes

The bisection proof of the Heine-Borel Lemma that we present in Theorem 5.2, is given in
[Armstrong, Theorem (3.3)] and [Sutherland, Exercise 13.15]. An alternative “creeping-along”
proof can be found in [Armstrong, Theorem (3.3)] and [Sutherland, Exercise 13.9].

Our definition of “connected” is identical to [Willard, Definition 26.1]. We thus deviate slightly
from [Sutherland] which uses condition (iii) of our Proposition 5.3 as a definition [Sutherland,
Definition 12.1], and turns our definition into a theorem, [Sutherland, Proposition 12.3]. The way
[Armstrong] defines “connected”, though equivalent to ours, requires the notion of closure of a set;
but in our course closure comes after connectedness.

The definition of interval is elementary and is taken from [Smith, Definition 1.11]. The claim about
classification of intervals is made in [Sutherland, Chapter 2: Notation and terminology].
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