
Week 4

Exercises (answers at end)

Version 2024/11/26. To accessible online version of these exercises

Exercise 4.1 (basic test of openness). Suppose that ℬ is a base of a topology on 𝑋, and
call the subsets of 𝑋 which are members of ℬ basic open sets.

Let 𝐴 be a subset of 𝑋. Prove that the following are equivalent:

1. 𝐴 is open in 𝑋.
2. 𝐴 is a union of a collection of basic open sets.
3. For each point 𝑥 ∈ 𝐴, there exists a basic open set 𝑈 such that 𝑥 ∈ 𝑈 and 𝑈 ⊆ 𝐴.

Exercise 4.2 (the Euclidean topology has a countable base). Consider the Euclidean space
ℝ2, and let 𝒬 be the (countable) collection of all open squares in ℝ2 where the coordinates
of all four vertices are rational numbers. Prove that 𝒬 is a base for the Euclidean topology.

Deduce that the collection of all open sets in the Euclidean space ℝ2 has cardinality ℵ
(continuum), whereas the collection of all subsets of ℝ2 has cardinality 2ℵ.

Reminder about cardinal numbers:

• ℵ0 (aleph-zero) denotes the countably infinite cardinality, e.g., the cardinality of ℕ;
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• ℵ (aleph) denotes the cardinality of continuum, e.g., the cardinality of ℝ,
• one has |ℝ| = ℵ = 2ℵ0 = |𝑃(ℕ)| > ℵ0.

Exercise 4.3 (subbase). Let (𝑌 ,𝒯) be a topological space. A subbase of 𝒯 is a collection
𝒮 of open sets such that finite intersections of sets from 𝒮 form a base of 𝒯.

It is worth noting that, given any set 𝑌 (without topology) and any collection 𝒮 of subsets
of 𝑌, we can construct a topology 𝒯𝒮 on 𝑋 by using 𝒮 as a subbase. That is, 𝒯𝒮 consists
of arbitrary unions of finite intersections of members of 𝒮. It is not difficult to show that
this collection 𝒯𝒮 is a topology.

Prove that the collection of all open rays in the real line, i.e., sets of the form (−∞, 𝑎)
and (𝑏,+∞), is a subbase of the Euclidean topology.

Exercise 4.4 (subbasic test of continuity). Let 𝑋, 𝑌 be topological spaces, 𝑓∶ 𝑋 → 𝑌 be
a function, and 𝒮 be a subbase of topology on 𝑌. Prove that the following are equivalent:

1. 𝑓 is continuous.
2. The preimage of every subbasic set in 𝑌 is open in 𝑋 (meaning: ∀𝑉 ∈ 𝒮, 𝑓−1(𝑉 )

is open in 𝑋.)

Exercise 4.5. (a) Let 𝑋 be a topological space and let 𝑓∶ 𝑋 → ℝ be a function. Prove:
𝑓 is continuous iff for all 𝑎, 𝑏 ∈ ℝ, the sets 𝑋𝑓<𝑎 = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) < 𝑎} and 𝑋𝑓>𝑏 =
{𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) > 𝑏} are open in 𝑋.

(b) Let 𝑋 be a topological space and let 𝑓, 𝑔 ∶ 𝑋 → ℝ be continuous functions. Prove
that the function 𝑓 + 𝑔∶ 𝑋 → ℝ is continuous. Hint: use (a).
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Exercise 4.1 (basic test of openness). Suppose that ℬ is a base of a topology on 𝑋, and
call the subsets of 𝑋 which are members of ℬ basic open sets.

Let 𝐴 be a subset of 𝑋. Prove that the following are equivalent:

1. 𝐴 is open in 𝑋.
2. 𝐴 is a union of a collection of basic open sets.
3. For each point 𝑥 ∈ 𝐴, there exists a basic open set 𝑈 such that 𝑥 ∈ 𝑈 and 𝑈 ⊆ 𝐴.

Answer to E4.1. 1.⟺2. by definition of a base.

Proof that 2.⇒3.: assume that 𝐴 = ⋃𝒞 where 𝒞 is a collection of basic open sets. Let
𝑥 ∈ 𝐴. By definition of union of a collection of sets, 𝑥 is contained in at least one set in
the collection 𝒞; call this set 𝑈. The choice of 𝑈 ensures that

• 𝑥 ∈ 𝑈;
• 𝑈 ∈ 𝒞, and 𝒞 is a collection of basic open sets, so 𝑈 is a basic open set;
• 𝑈 ∈ 𝒞, and ⋃𝒞 = 𝐴, so 𝑈 ⊆ 𝐴.
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We have proved that 3. holds.

Proof that 3.⇒2.: assume that 3. holds. For each point 𝑥 ∈ 𝐴, 3. allows us to choose a
basic open set 𝑈𝑥 such that 𝑥 ∈ 𝑈𝑥 ⊆ 𝐴.

We claim that the union of the collection {𝑈𝑥}𝑥∈𝐴 of basic open sets is 𝐴. Indeed,

• for all 𝑦 ∈ 𝐴, we have 𝑦 ∈ 𝑈𝑦 by the choice of 𝑈𝑦, hence 𝑦 ∈ ⋃
𝑥∈𝐴

𝑈𝑥; this proves

that 𝐴 ⊆ ⋃
𝑥∈𝐴

𝑈𝑥;

• for each 𝑥 ∈ 𝐴, 𝑈𝑥 ⊆ 𝐴, and so ⋃
𝑥∈𝐴

𝑈𝑥 ⊆ 𝐴.

Thus ⋃
𝑥∈𝐴

𝑈𝑥 = 𝐴, and so 2. holds.

Exercise 4.2 (the Euclidean topology has a countable base). Consider the Euclidean space
ℝ2, and let 𝒬 be the (countable) collection of all open squares in ℝ2 where the coordinates
of all four vertices are rational numbers. Prove that 𝒬 is a base for the Euclidean topology.

Deduce that the collection of all open sets in the Euclidean space ℝ2 has cardinality ℵ
(continuum), whereas the collection of all subsets of ℝ2 has cardinality 2ℵ.

Answer to E4.2. Denote by 𝑄𝑠×𝑠
(𝑎,𝑏) the square of size 𝑠 × 𝑠 whose bottom left corner is

the point (𝑎, 𝑏) in ℝ2.

1. First, we show that every square 𝑄𝑠×𝑠
(𝑎,𝑏) with 𝑎, 𝑏, 𝑠 real is a union of some collection

{𝑄𝑠𝑛×𝑠𝑛
(𝑎𝑛,𝑏𝑛)

}𝑛≥1 of squares with 𝑎𝑛, 𝑏𝑛, 𝑠𝑛 rational.

Indeed, let (𝑎𝑛) be a sequence of rational numbers such that 𝑎𝑛 ≥ 𝑎 and lim𝑛→∞ 𝑎𝑛 = 𝑎.
Also, let (𝑠𝑛) be a sequence of rational numbers such that lim 𝑠𝑛 = 𝑠 and 𝑎𝑛+𝑠𝑛 ≤ 𝑎+𝑠.
(It is not difficult to show that such sequences of rational numbers exist.)

Then 𝑄𝑠𝑛×𝑠𝑛
(𝑎𝑛,𝑏𝑛)

⊆ 𝑄𝑠×𝑠
(𝑎,𝑏) for all 𝑛, and ⋃𝑛≥1{𝑄

𝑠𝑛×𝑠𝑛
(𝑎𝑛,𝑏𝑛)

} = 𝑄𝑠×𝑠
(𝑎,𝑏). See the Figure for

illustration.
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𝑥

𝑦

𝑄𝑠×𝑠
(𝑎,𝑏)

𝑎 𝑎 + 𝑠

𝑏

𝑏 + 𝑠

Every square with sides parallel to the axes is a union of a collection of squares with
rational coordinates

2. Now we argue that every set which is open in the Euclidean plane ℝ2 is a union of
some open squares. Recall that an open square plays the role of 𝑑∞-open ball where the
metric 𝑑∞ on ℝ2 is defined by

𝑑∞((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max(|𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|),

see the discussion after Proposition 2.3. Specifically, 𝑄𝑠×𝑠
(𝑎,𝑏) is the open ball 𝐵𝑑∞𝑟 ((𝑎 +

𝑠
2 , 𝑏 +

𝑠
2)) where 𝑟 = 𝑠

2 .

By definition of metric topology, open balls form a base of topology so it follows that every
𝑑∞-open set in ℝ2 is a union of squares, and by 1., a union of rational squares.

It remains to recall that “𝑑∞-open” is the same as “Euclidean open”, because the metric
𝑑∞ is Lipschitz equivalent to the Euclidean metric 𝑑2, see Proposition 2.3.

Exercise 4.3 (subbase). Let (𝑌 ,𝒯) be a topological space. A subbase of 𝒯 is a collection
𝒮 of open sets such that finite intersections of sets from 𝒮 form a base of 𝒯.



Exercises — solutions 64

It is worth noting that, given any set 𝑌 (without topology) and any collection 𝒮 of subsets
of 𝑌, we can construct a topology 𝒯𝒮 on 𝑋 by using 𝒮 as a subbase. That is, 𝒯𝒮 consists
of arbitrary unions of finite intersections of members of 𝒮. It is not difficult to show that
this collection 𝒯𝒮 is a topology.

Prove that the collection of all open rays in the real line, i.e., sets of the form (−∞, 𝑎)
and (𝑏,+∞), is a subbase of the Euclidean topology.

Answer to E4.3. Let 𝒮 be the collection of all open rays in ℝ. By taking intersections
of just two sets from 𝒮, we can generate all open bounded intervals in ℝ:

(𝑏, 𝑎) = (−∞, 𝑎) ∩ (𝑏,+∞).

Since the open intervals (𝑏, 𝑎), where 𝑎, 𝑏 ∈ ℝ, form a base of the Euclidean topology on
ℝ, the topology 𝒯𝒮 generated by the subbase 𝒮 contains the Euclidean topology.

On the other hand, every set in 𝒮 is open in the Euclidean topology, hence so are unions
of finite intersections of sets from 𝒮. Therefore, the topology 𝒯𝒮 is contained in the
Euclidean topology.

We conclude that 𝒯𝒮 is equal to the Euclidean topology, as claimed.

Exercise 4.4 (subbasic test of continuity). Let 𝑋, 𝑌 be topological spaces, 𝑓∶ 𝑋 → 𝑌 be
a function, and 𝒮 be a subbase of topology on 𝑌. Prove that the following are equivalent:

1. 𝑓 is continuous.
2. The preimage of every subbasic set in 𝑌 is open in 𝑋 (meaning: ∀𝑉 ∈ 𝒮, 𝑓−1(𝑉 )

is open in 𝑋.)

Answer to E4.4. 1. ⇒ 2.: by definition of subbase, 𝒮 is a subcollection of the topology
on 𝑌, i.e., every subbasic set in is open in 𝑌. By definition of “continuous”, the preimage of
an open set is open, and so the preimages of subbasic sets must be open in 𝑋, proving 2.

2. ⇒ 1.: a base ℬ of topology on 𝑌 consists of sets of the form 𝑉1 ∩⋯∩𝑉𝑛, where 𝑛 ≥ 0
and 𝑉1,… , 𝑉𝑛 ∈ 𝒮. The preimage of intersection is the intersection of preimages, so we
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have
𝑓−1(𝑉1 ∩ ⋯ ∩ 𝑉𝑛) = 𝑓−1(𝑉1) ∩ ⋯ ∩ 𝑓−1(𝑉𝑛),

and, since 𝑓−1(𝑉𝑖) is open in 𝑋 by 2., and a finite intersection of open sets is open, we
conclude that 𝑓−1(𝑉 ) is open in 𝑋 for all 𝑉 ∈ ℬ.

Finally, every open set in 𝑌 is a union of sets from ℬ, and the preimage of a union is
the union of preimages. We conclude that 𝑓−1(open set in 𝑌 ) is open in 𝑋, hence, by
definition of “continuous”, 𝑓 is continuous, proving 1.

Exercise 4.5. (a) Let 𝑋 be a topological space and let 𝑓∶ 𝑋 → ℝ be a function. Prove:
𝑓 is continuous iff for all 𝑎, 𝑏 ∈ ℝ, the sets 𝑋𝑓<𝑎 = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) < 𝑎} and 𝑋𝑓>𝑏 =
{𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) > 𝑏} are open in 𝑋.

(b) Let 𝑋 be a topological space and let 𝑓, 𝑔 ∶ 𝑋 → ℝ be continuous functions. Prove
that the function 𝑓 + 𝑔∶ 𝑋 → ℝ is continuous. Hint: use (a).

Answer to E4.5. (a) Note that 𝑋𝑓<𝑎 = 𝑓−1((−∞, 𝑎)) and 𝑋𝑓>𝑏 = 𝑓−1((𝑏,+∞)).
The sets (−∞, 𝑎) and (𝑏,+∞) form a subbase of the Euclidean topology on ℝ (see an
earlier exercise). Hence by the subbasic test of continuity (see the previous exercise), 𝑓 is
continuous iff all the sets 𝑋𝑓<𝑎 and 𝑋𝑓>𝑏 are open.

(b) We need to prove that the sets 𝑋𝑓+𝑔<𝑎, 𝑋𝑓+𝑔>𝑏 are open for all 𝑎, 𝑏 ∈ ℝ. Note that

𝑓(𝑥) + 𝑔(𝑥) < 𝑎 ⟺ ∃𝑡 ∈ ℝ ∶ 𝑓(𝑥) < 𝑡, 𝑔(𝑥) < 𝑎 − 𝑡.

Indeed, ⇐ is obvious, and to see ⇒, take 𝑡 to be any real number in the interval (𝑓(𝑥), 𝑎−
𝑔(𝑥)). The above rewrites in terms of sets as

𝑋𝑓+𝑔<𝑎 = ⋃
𝑡∈ℝ

𝑋𝑓<𝑡 ∩𝑋𝑔<𝑎−𝑡.

Since 𝑓, 𝑔 are continuous, by (a) the sets 𝑋𝑓<𝑡 and 𝑋𝑔<𝑎−𝑡 are open in 𝑋; the intersection
of two open sets is open, and the union of any collection of open sets is open, which shows
that 𝑋𝑓+𝑔<𝑎 is open.

It is shown in the same way that 𝑋𝑓+𝑔>𝑏 is an open subset of 𝑋, for all 𝑏 ∈ ℝ. We now
use (a) again to conclude that 𝑓 + 𝑔 is a continuous function.
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