Week 4

Exercises (answers at end)

Version 2024/11/26. To accessible online version of these exercises

Exercise 4.1 (basic test of openness). Suppose that \mathscr{B} is a base of a topology on X, and call the subsets of X which are members of \mathscr{B} basic open sets.

Let A be a subset of X. Prove that the following are equivalent:

- 1. A is open in X.
- 2. A is a union of a collection of basic open sets.
- 3. For each point $x \in A$, there exists a basic open set U such that $x \in U$ and $U \subseteq A$.

Exercise 4.2 (the Euclidean topology has a countable base). Consider the Euclidean space \mathbb{R}^2 , and let \mathcal{Q} be the (countable) collection of all open squares in \mathbb{R}^2 where the coordinates of all four vertices are rational numbers. Prove that \mathcal{Q} is a base for the Euclidean topology.

Deduce that the collection of all open sets in the Euclidean space \mathbb{R}^2 has cardinality \aleph (continuum), whereas the collection of all subsets of \mathbb{R}^2 has cardinality 2^{\aleph} .

Reminder about cardinal numbers:

• \aleph_0 (aleph-zero) denotes the countably infinite cardinality, e.g., the cardinality of \mathbb{N} ;

- \aleph (aleph) denotes the cardinality of continuum, e.g., the cardinality of \mathbb{R} ,
- one has $|\mathbb{R}| = \aleph = 2^{\aleph_0} = |P(\mathbb{N})| > \aleph_0$.

Exercise 4.3 (subbase). Let (Y, \mathcal{T}) be a topological space. A subbase of \mathcal{T} is a collection \mathcal{S} of open sets such that finite intersections of sets from \mathcal{S} form a base of \mathcal{T} .

It is worth noting that, given any set Y (without topology) and any collection \mathscr{S} of subsets of Y, we can construct a topology $\mathscr{T}_{\mathscr{S}}$ on X by using \mathscr{S} as a subbase. That is, $\mathscr{T}_{\mathscr{S}}$ consists of arbitrary unions of finite intersections of members of \mathscr{S} . It is not difficult to show that this collection $\mathscr{T}_{\mathscr{S}}$ is a topology.

Prove that the collection of all **open rays** in the real line, i.e., sets of the form $(-\infty, a)$ and $(b, +\infty)$, is a subbase of the Euclidean topology.

Exercise 4.4 (subbasic test of continuity). Let X, Y be topological spaces, $f: X \to Y$ be a function, and \mathscr{S} be a subbase of topology on Y. Prove that the following are equivalent:

- 1. f is continuous.
- 2. The preimage of every subbasic set in Y is open in X (meaning: $\forall V \in \mathcal{S}$, $f^{-1}(V)$ is open in X.)

Exercise 4.5. (a) Let X be a topological space and let $f: X \to \mathbb{R}$ be a function. Prove: f is continuous iff for all $a, b \in \mathbb{R}$, the sets $X_{f < a} = \{x \in X : f(x) < a\}$ and $X_{f > b} = \{x \in X : f(x) > b\}$ are open in X.

(b) Let X be a topological space and let $f, g: X \to \mathbb{R}$ be continuous functions. Prove that the function $f + g: X \to \mathbb{R}$ is continuous. Hint: use (a).

Week 4

Exercises — solutions

Version 2024/11/26. To accessible online version of these exercises

Exercise 4.1 (basic test of openness). Suppose that \mathscr{B} is a base of a topology on X, and call the subsets of X which are members of \mathscr{B} basic open sets.

Let A be a subset of X. Prove that the following are equivalent:

- 1. A is open in X.
- 2. A is a union of a collection of basic open sets.
- 3. For each point $x \in A$, there exists a basic open set U such that $x \in U$ and $U \subseteq A$.

Answer to E4.1. $1 \iff 2$. by definition of a base.

Proof that $2 \Rightarrow 3$.: assume that $A = \bigcup \mathscr{C}$ where \mathscr{C} is a collection of basic open sets. Let $x \in A$. By definition of union of a collection of sets, x is contained in at least one set in the collection \mathscr{C} ; call this set U. The choice of U ensures that

- $x \in U$;
- $U \in \mathscr{C}$, and \mathscr{C} is a collection of basic open sets, so U is a basic open set;
- $U \in \mathscr{C}$, and $\bigcup \mathscr{C} = A$, so $U \subseteq A$.

Exercises — solutions

We have proved that 3. holds.

Proof that 3. \Rightarrow 2.: assume that 3. holds. For each point $x \in A$, 3. allows us to choose a basic open set U_x such that $x \in U_x \subseteq A$.

We claim that the union of the collection $\{U_x\}_{x\in A}$ of basic open sets is A. Indeed,

- for all $y \in A$, we have $y \in U_y$ by the choice of U_y , hence $y \in \bigcup_{x \in A} U_x$; this proves that $A \subseteq \bigcup_{x \in A} U_x$;
- that $A \subseteq \bigcup_{x \in A} U_x$; • for each $x \in A$, $U_x \subseteq A$, and so $\bigcup_{x \in A} U_x \subseteq A$.

Thus $\bigcup_{x\in A} U_x = A$, and so 2. holds.

Exercise 4.2 (the Euclidean topology has a countable base). Consider the Euclidean space \mathbb{R}^2 , and let \mathcal{Q} be the (countable) collection of all open squares in \mathbb{R}^2 where the coordinates of all four vertices are rational numbers. Prove that \mathcal{Q} is a base for the Euclidean topology.

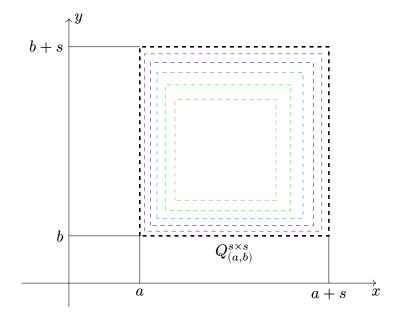
Deduce that the collection of all open sets in the Euclidean space \mathbb{R}^2 has cardinality \aleph (continuum), whereas the collection of all subsets of \mathbb{R}^2 has cardinality 2^{\aleph} .

Answer to E4.2. Denote by $Q_{(a,b)}^{s \times s}$ the square of size $s \times s$ whose bottom left corner is the point (a, b) in \mathbb{R}^2 .

1. First, we show that every square $Q_{(a,b)}^{s \times s}$ with a, b, s real is a union of some collection $\{Q_{(a_n,b_n)}^{s_n \times s_n}\}_{n \ge 1}$ of squares with a_n, b_n, s_n rational.

Indeed, let (a_n) be a sequence of rational numbers such that $a_n \ge a$ and $\lim_{n\to\infty} a_n = a$. Also, let (s_n) be a sequence of rational numbers such that $\lim s_n = s$ and $a_n + s_n \le a + s$. (It is not difficult to show that such sequences of rational numbers exist.)

Then $Q_{(a_n,b_n)}^{s_n \times s_n} \subseteq Q_{(a,b)}^{s \times s}$ for all n, and $\bigcup_{n \ge 1} \{Q_{(a_n,b_n)}^{s_n \times s_n}\} = Q_{(a,b)}^{s \times s}$. See the Figure for illustration.



Every square with sides parallel to the axes is a union of a collection of squares with rational coordinates

2. Now we argue that every set which is open in the Euclidean plane \mathbb{R}^2 is a union of some open squares. Recall that an open square plays the role of d_∞ -open ball where the metric d_∞ on \mathbb{R}^2 is defined by

$$d_\infty((x_1,x_2),(y_1,y_2))=\max(|x_1-y_1|,|x_2-y_2|),$$

see the discussion after Proposition 2.3. Specifically, $Q_{(a,b)}^{s \times s}$ is the open ball $B_r^{d_{\infty}}((a + \frac{s}{2}, b + \frac{s}{2}))$ where $r = \frac{s}{2}$.

By definition of metric topology, open balls form a base of topology so it follows that every d_{∞} -open set in \mathbb{R}^2 is a union of squares, and by 1., a union of rational squares.

It remains to recall that " d_{∞} -open" is the same as "Euclidean open", because the metric d_{∞} is Lipschitz equivalent to the Euclidean metric d_2 , see Proposition 2.3.

Exercise 4.3 (subbase). Let (Y, \mathcal{T}) be a topological space. A subbase of \mathcal{T} is a collection \mathcal{S} of open sets such that finite intersections of sets from \mathcal{S} form a base of \mathcal{T} .

It is worth noting that, given any set Y (without topology) and any collection \mathscr{S} of subsets of Y, we can construct a topology $\mathscr{T}_{\mathscr{S}}$ on X by using \mathscr{S} as a subbase. That is, $\mathscr{T}_{\mathscr{S}}$ consists of arbitrary unions of finite intersections of members of \mathscr{S} . It is not difficult to show that this collection $\mathscr{T}_{\mathscr{S}}$ is a topology.

Prove that the collection of all **open rays** in the real line, i.e., sets of the form $(-\infty, a)$ and $(b, +\infty)$, is a subbase of the Euclidean topology.

Answer to E4.3. Let S be the collection of all open rays in \mathbb{R} . By taking intersections of just two sets from S, we can generate all open bounded intervals in \mathbb{R} :

$$(b,a) = (-\infty,a) \cap (b,+\infty).$$

Since the open intervals (b, a), where $a, b \in \mathbb{R}$, form a base of the Euclidean topology on \mathbb{R} , the topology $\mathscr{T}_{\mathscr{S}}$ generated by the subbase \mathscr{S} contains the Euclidean topology.

On the other hand, every set in \mathscr{S} is open in the Euclidean topology, hence so are unions of finite intersections of sets from \mathscr{S} . Therefore, the topology $\mathscr{T}_{\mathscr{S}}$ is contained in the Euclidean topology.

We conclude that $\mathcal{T}_{\mathcal{S}}$ is equal to the Euclidean topology, as claimed.

Exercise 4.4 (subbasic test of continuity). Let X, Y be topological spaces, $f: X \to Y$ be a function, and \mathscr{S} be a subbase of topology on Y. Prove that the following are equivalent:

- 1. f is continuous.
- 2. The preimage of every subbasic set in Y is open in X (meaning: $\forall V \in \mathcal{S}$, $f^{-1}(V)$ is open in X.)

Answer to E4.4. $1. \Rightarrow 2.:$ by definition of subbase, \mathscr{S} is a subcollection of the topology on *Y*, i.e., every subbasic set in is open in *Y*. By definition of "continuous", the preimage of an open set is open, and so the preimages of subbasic sets must be open in *X*, proving 2.

2. \Rightarrow 1.: a base \mathscr{B} of topology on Y consists of sets of the form $V_1 \cap \dots \cap V_n$, where $n \ge 0$ and $V_1, \dots, V_n \in \mathscr{S}$. The preimage of intersection is the intersection of preimages, so we have

$$f^{-1}(V_1\cap\cdots\cap V_n)=f^{-1}(V_1)\cap\cdots\cap f^{-1}(V_n),$$

and, since $f^{-1}(V_i)$ is open in X by 2., and a finite intersection of open sets is open, we conclude that $f^{-1}(V)$ is open in X for all $V \in \mathscr{B}$.

Finally, every open set in Y is a union of sets from \mathscr{B} , and the preimage of a union is the union of preimages. We conclude that f^{-1} (open set in Y) is open in X, hence, by definition of "continuous", f is continuous, proving 1.

Exercise 4.5. (a) Let X be a topological space and let $f: X \to \mathbb{R}$ be a function. Prove: f is continuous iff for all $a, b \in \mathbb{R}$, the sets $X_{f < a} = \{x \in X : f(x) < a\}$ and $X_{f > b} = \{x \in X : f(x) > b\}$ are open in X.

(b) Let X be a topological space and let $f, g: X \to \mathbb{R}$ be continuous functions. Prove that the function $f + g: X \to \mathbb{R}$ is continuous. Hint: use (a).

Answer to E4.5. (a) Note that $X_{f < a} = f^{-1}((-\infty, a))$ and $X_{f > b} = f^{-1}((b, +\infty))$. The sets $(-\infty, a)$ and $(b, +\infty)$ form a subbase of the Euclidean topology on \mathbb{R} (see an earlier exercise). Hence by the subbasic test of continuity (see the previous exercise), f is continuous iff all the sets $X_{f < a}$ and $X_{f > b}$ are open.

(b) We need to prove that the sets $X_{f+q < a}$, $X_{f+q > b}$ are open for all $a, b \in \mathbb{R}$. Note that

$$f(x) + g(x) < a \quad \iff \quad \exists t \in \mathbb{R}: \ f(x) < t, \ g(x) < a - t.$$

Indeed, \Leftarrow is obvious, and to see \Rightarrow , take t to be any real number in the interval (f(x), a - g(x)). The above rewrites in terms of sets as

$$X_{f+g < a} = \bigcup_{t \in \mathbb{R}} X_{f < t} \cap X_{g < a-t}.$$

Since f, g are continuous, by (a) the sets $X_{f < t}$ and $X_{g < a-t}$ are open in X; the intersection of two open sets is open, and the union of any collection of open sets is open, which shows that $X_{f+g < a}$ is open.

It is shown in the same way that $X_{f+g>b}$ is an open subset of X, for all $b \in \mathbb{R}$. We now use (a) again to conclude that f + g is a continuous function.