Week 4

Compactness

Version 2024/11/02 [To accessible online version of this chapter](https://personalpages.manchester.ac.uk/staff/yuri.bazlov/topology/notes/ch4.html)

Reminder: an open cover of a topological space X is a collection $\mathscr C$ of subsets of X where, for each $U \in \mathcal{C}$, U is an open subset of X, and $| \cdot | \mathcal{C} = X$.

Definition: subcover of an open cover.

A subcover of an open cover C of X is a subcollection of C which is still an open cover of X .

The following is one of the key notions of the course.

Definition: compact.

A topological space X is **compact** if every open cover of X has a finite subcover.

Compactness is a very powerful property, but it may require an effort to show directly that \overline{X} is compact, beyond simple examples. Let us start with a **non-example:**

Example: a non-compact topological space.

Show that the Euclidean line ℝ is not compact.

Solution: consider the collection

$$
\mathscr{C}=\{B_r(0):r>0\}
$$

which consists of all open intervals $(-r, r)$ with r positive. These intervals are open, and their the union contains all points of ℝ; that is, $\mathscr C$ is an open cover of ℝ.

Yet $\mathscr C$ has no finite subcover: any finite subcollection $\{B_{r_1}(0),\ldots,B_{r_n}(0)\}$ of $\mathscr C$ has union equal to $B_R(0)$ where $R = \max(r_1, \dots, r_n)$, and this is not the whole of $\R.$

Thus, there is an open cover of $\mathbb R$ which has no finite subcover, so $\mathbb R$ is not compact.

At the moment, we can only give a very easy example of a compact space:

Example: a finite space is compact.

Let X be a finite set. Show that any topology on X is compact.

Solution: exercise.

Terminology.

We say **"a compact"** to refer to a compact topological space.

We say " K is a compact set in X " or "a compact subset of X " to mean that K is a subset of a topological space X such that K , viewed with the subspace topology, is compact.

We will often deal with compact sets contained inside some topological space, and the following technical lemma will simplify proofs.

Lemma 4.1: criterion of compactness for a subset.

Let K be a subset of a topological space X . The following are equivalent:

- 1. K is a compact subset of X .
- 2. Any collection $\mathcal F$ of open sets in X, which covers K (that is, $K \subseteq \cup \mathcal F$), has a finite subcollection which still covers K .

Proof (not given in class). 1. \Rightarrow 2.: suppose the subspace topology on K is compact, and let $\mathcal F$ be a collection of **open subsets of** X such that $K \subseteq \bigcup \mathcal F$. The collection $\mathscr{F}_K = \{ U \cap K : U \in \mathscr{F} \}$ of subsets of K is clearly an open cover of K. By assumption, K is compact so this open cover must have a finite subcover, say $\{U_1\cap K,...\,,U_n\cap K\}.$ Then $\{U_1,\ldots,U_n\}$ is a finite subcollection of ${\mathscr F}$ which still covers $K.$

2. \Rightarrow 1.: to show that K is compact, we let $\mathscr C$ be an open cover of K. By definition of subspace topology, $\mathscr C$ is of the form $\{U_\alpha \cap K : \alpha \in I\}$ where U_α are open in X. Clearly, for $\mathscr C$ to cover K , one must have $K \subseteq \bigcup_{\alpha \in I} U_{\alpha}$.

By condition 2., the collection $\{U_\alpha:\alpha\in I\}$ has a finite subcollection, say $U_{\alpha_1},\ldots,U_{\alpha_n},$ which still covers K . Hence $\mathscr C$ has finite subcover $U_{\alpha_1}\cap K,...\,,U_{\alpha_n}\cap K$, verifying the definition of "compact" for K . \Box

The next result shows that compactness is not only a topological property but can help solve Main Problem [2,](#page--1-0) mentioned earlier.

Theorem 4.2: a continuous image of a compact is compact.

If X is a compact topological space and $f: X \to Y$ is continuous, then $f(X)$ is a compact set in Y .

Proof. We will use Criterion [4.1](#page-1-0) of compactness for a subset to show that $f(X)$ is a compact set. Suppose a collection $\mathcal G$ of open sets in Y covers $f(X)$: that is, $f(X) \subseteq \mathcal G$.

Consider the collection $\mathscr{C} = \{f^{-1}(V) : V \in \mathscr{C}\}\$ of subsets of X. We claim that \mathscr{C} is an open cover of $X.$ If V is open in Y , " f is continuous" means that $f^{-1}(V)$ is open in $X,$ so all members of $\mathscr C$ are open in X . Also,

$$
X = f^{-1}(f(X)) \subseteq f^{-1}\left(\bigcup \mathcal{G}\right) = \bigcup \{f^{-1}(V) : V \in \mathcal{G}\}
$$

which shows that $\mathscr C$ covers X.

Since X is compact, $\mathscr C$ has finite subcover, say $f^{-1}(V_1),\ldots,f^{-1}(V_n)$. Then V_1,\ldots,V_n is a finite subcollection of $\mathcal G$ which covers $f(X)$. We have verified Criterion [4.1,](#page-1-0) hence $f(X)$ is a compact set in Y . \Box

Figure 4.1: if the sets $U_1, \dots, U_n, X\setminus F$ cover X , then the sets U_1, \dots, U_n cover F

Corollary.

Compactness is a topological property.

Proof. If X is compact and $X \xrightarrow{^{\sim}} Y$, then f is continuous, so $f(X)$ must be compact by Theorem [4.2.](#page-2-0) Yet $f(X) = Y$ because f, being a homeomorphism, is surjective. \Box

If we found a compact space X , the next result allows us to construct new compact spaces.

Proposition 4.3.

A closed subset of a compact is compact.

Proof. Let X be a compact topological space and let F be a closed subset of X . We want to use Criterion [4.1,](#page-1-0) so we let F be covered by a family $\mathscr C$ of open subsets of X. Then

 $\mathscr{C} \cup \{X \setminus F\}$

is an open cover for the whole of X .

Since X is compact, $\mathscr{C} \cup \{X \setminus F\}$ has a finite subcover of X. This finite subcover of X. can be U_1,\ldots,U_n or $U_1,\ldots,U_n,X\setminus F.$ In either case, the sets U_1,\ldots,U_n form a finite subcollection of $\mathscr C$ which must cover F . (This last step is illustrated by Figure [4.1.](#page-3-0)) \Box

The above is as much as we can say about compact spaces without assuming additional topological properties besides compactness. We will now see that **compactness** works very well together with the **Hausdorff property:**

Proposition 4.4.

In a Hausdorff space, a compact set is closed.

Proof. Let X be a Hausdorff topological space and let K be a compact subset of X . Letting z be any point of $X \setminus K$, it is enough to prove:

$$
(\dagger) \quad z \in X \setminus K \quad \Rightarrow \quad \exists \text{ open } V(z) \colon z \in V(z) \text{ and } V(z) \subseteq X \setminus K.
$$

Indeed, if (†) holds then, in the same way as in the proof of Proposition [3.4](#page--1-1) $X \setminus K =$ $\bigcup_{z\in X\setminus K}V(z)$ is an open set, so K is closed.

For each $x \in K$, the Hausdorff property gives us open neighbourhoods

$$
U(x) \ni x, \quad V_x(z) \ni z: \quad U(x) \cap V_x(z) = \emptyset.
$$

The open sets $\{U(x) : x \in K\}$ cover K, so by Criterion [4.1](#page-1-0) there is a finite subcollection $U(x_1), \ldots, U(x_n)$ which still covers K . Put

$$
V(z)=V_{x_1}(z)\cap \cdots \cap V_{x_n}(z).
$$

(The construction of the open neighbourhood $V(z)$ is illustrated by Figure [4.2.](#page-5-0))

As a finite intersection of open sets, $V(z)$ is open. Moreover, by construction $V(z) \cap$ $U_{x_i}(z) \subseteq V_{x_i}(z) \cap U_{x_i}(z) = \emptyset$ and so

$$
V(z) \cap (U(x_1) \cup \cdots \cup U(x_n)) = \bigcup_{i=1}^n V(z) \cap U(x_i) = \emptyset.
$$

Figure 4.2: the construction of the open neighbourhood $V(z)$ which does not intersect K

Since K is contained in the union $U(x_1) \cup \cdots \cup U(x_n)$, it follows that $V(z)$ does not intersect K . We have therefore proved (\dagger) and the Proposition. \Box

We arrive at a result which generalises important results from real analysis known as inverse function theorems.

Theorem 4.5: the Topological Inverse Function Theorem, IFT.

If K is a compact space, Y is a Hausdorff space and $f: K \to Y$ is a continuous bijection, then f is a homeomorphism.

Proof. f is already assumed to be bijective and continuous, hence to show that f is a homeomorphism, we need to prove that the inverse function $f^{-1}\colon Y\to K$ is continuous. We will use the closed set criterion of continuity, Proposition [2.5.](#page--1-2) Let $F \subset K$ be closed in K. The f^{-1} -preimage of F is $(f^{-1})^{-1}(F) = f(F)$:

- a closed subset of a compact is compact (Proposition [4.3\)](#page-3-1) so F is compact,
- a continuous image of a compact is compact (Theorem [4.2\)](#page-2-0), so $f(F)$ is compact,

• a compact subset of the Hausdorff space Y is closed (Proposition [4.4\)](#page-4-0), so $f(F)$ is closed in Y .

We have shown that the function f^{-1} is such that the preimage of a closed set is closed. Hence, by the closed set criterion of continuity, f^{-1} is continuous. \Box

References for the week 4 notes

[\[Sutherland\]](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) gives detailed definitions of **cover, subcover** and **open cover** in [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Definitions 13.3-13.5] and then defines a **compact subset** of X straight away in [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Definition 13.6], without defining a compact space first. In this way, [\[Sutherland\]](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) avoids the Criterion of Compactness for a subset 4.1 altogether $-$ the Criterion becomes the definition of compactness!

Our Theorem [4.2,](#page-2-0) **a continuous image of a compact is compact,** is [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Proposition 13.15].

The key idea behind **Figure [4.1](#page-3-0)** is by [OpenAI ChatGPT](https://chatgpt.com) (prompt: generate a diagram to illustrate the proof that a closed subset of a compact is compact). YB changed the shapes of sets to make the diagram less cluttered.

Proposition [4.3,](#page-3-1) **a closed subset of a compact is compact** is [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Proposition 13.20]. Proposition [4.4,](#page-4-0) **a compact is closed in Hausdorff,** is [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Proposition 13.12]. Theorem [4.5,](#page-5-1) **the topological inverse function theorem,** is [\[Sutherland,](https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631) Proposition 13.26].