
Week 4

Compactness

Version 2024/11/02 To accessible online version of this chapter

Reminder: an open cover of a topological space 𝑋 is a collection 𝒞 of subsets of 𝑋
where, for each 𝑈 ∈ 𝒞, 𝑈 is an open subset of 𝑋, and ⋃𝒞 = 𝑋.

Definition: subcover of an open cover.

A subcover of an open cover 𝒞 of 𝑋 is a subcollection of 𝒞 which is still an open
cover of 𝑋.

The following is one of the key notions of the course.

Definition: compact.

A topological space 𝑋 is compact if every open cover of 𝑋 has a finite subcover.

Compactness is a very powerful property, but it may require an effort to show directly that
𝑋 is compact, beyond simple examples. Let us start with a non-example:

Example: a non-compact topological space.

Show that the Euclidean line ℝ is not compact.
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Solution: consider the collection

𝒞 = {𝐵𝑟(0) ∶ 𝑟 > 0}

which consists of all open intervals (−𝑟, 𝑟) with 𝑟 positive. These intervals are open, and
their the union contains all points of ℝ; that is, 𝒞 is an open cover of ℝ.

Yet 𝒞 has no finite subcover: any finite subcollection {𝐵𝑟1(0),… ,𝐵𝑟𝑛(0)} of 𝒞 has union
equal to 𝐵𝑅(0) where 𝑅 = max(𝑟1,… , 𝑟𝑛), and this is not the whole of ℝ.

Thus, there is an open cover of ℝ which has no finite subcover, so ℝ is not compact.

At the moment, we can only give a very easy example of a compact space:

Example: a finite space is compact.

Let 𝑋 be a finite set. Show that any topology on 𝑋 is compact.

Solution: exercise.

Terminology.

We say “a compact” to refer to a compact topological space.

We say “𝐾 is a compact set in 𝑋” or “a compact subset of 𝑋” to mean that 𝐾 is
a subset of a topological space 𝑋 such that 𝐾, viewed with the subspace topology,
is compact.

We will often deal with compact sets contained inside some topological space, and the
following technical lemma will simplify proofs.

Lemma 4.1: criterion of compactness for a subset.

Let 𝐾 be a subset of a topological space 𝑋. The following are equivalent:
1. 𝐾 is a compact subset of 𝑋.
2. Any collection ℱ of open sets in 𝑋, which covers 𝐾 (that is, 𝐾 ⊆ ⋃ℱ), has

a finite subcollection which still covers 𝐾.
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Proof (not given in class). 1. ⇒ 2.: suppose the subspace topology on 𝐾 is compact,
and let ℱ be a collection of open subsets of 𝑋 such that 𝐾 ⊆ ⋃ℱ. The collection
ℱ𝐾 = {𝑈 ∩ 𝐾 ∶ 𝑈 ∈ ℱ} of subsets of 𝐾 is clearly an open cover of 𝐾. By assumption,
𝐾 is compact so this open cover must have a finite subcover, say {𝑈1 ∩𝐾,… ,𝑈𝑛 ∩𝐾}.
Then {𝑈1,… , 𝑈𝑛} is a finite subcollection of ℱ which still covers 𝐾.

2. ⇒ 1.: to show that 𝐾 is compact, we let 𝒞 be an open cover of 𝐾. By definition of
subspace topology, 𝒞 is of the form {𝑈𝛼 ∩ 𝐾 ∶ 𝛼 ∈ 𝐼} where 𝑈𝛼 are open in 𝑋. Clearly,
for 𝒞 to cover 𝐾, one must have 𝐾 ⊆ ⋃𝛼∈𝐼 𝑈𝛼.

By condition 2., the collection {𝑈𝛼 ∶ 𝛼 ∈ 𝐼} has a finite subcollection, say 𝑈𝛼1
,… , 𝑈𝛼𝑛

,
which still covers 𝐾. Hence 𝒞 has finite subcover 𝑈𝛼1

∩ 𝐾,… ,𝑈𝛼𝑛
∩ 𝐾, verifying the

definition of “compact” for 𝐾.

The next result shows that compactness is not only a topological property but can help
solve Main Problem 2, mentioned earlier.

Theorem 4.2: a continuous image of a compact is compact.

If 𝑋 is a compact topological space and 𝑓∶ 𝑋 → 𝑌 is continuous, then 𝑓(𝑋) is a
compact set in 𝑌.

Proof. We will use Criterion 4.1 of compactness for a subset to show that 𝑓(𝑋) is a
compact set. Suppose a collection 𝒢 of open sets in 𝑌 covers 𝑓(𝑋): that is, 𝑓(𝑋) ⊆ ⋃𝒢.

Consider the collection 𝒞 = {𝑓−1(𝑉 ) ∶ 𝑉 ∈ 𝒢} of subsets of 𝑋. We claim that 𝒞 is an
open cover of 𝑋. If 𝑉 is open in 𝑌, “𝑓 is continuous” means that 𝑓−1(𝑉 ) is open in 𝑋, so
all members of 𝒞 are open in 𝑋. Also,

𝑋 = 𝑓−1(𝑓(𝑋)) ⊆ 𝑓−1(⋃𝒢) = ⋃{𝑓−1(𝑉 ) ∶ 𝑉 ∈ 𝒢}

which shows that 𝒞 covers 𝑋.

Since 𝑋 is compact, 𝒞 has finite subcover, say 𝑓−1(𝑉1),… , 𝑓−1(𝑉𝑛). Then 𝑉1,… , 𝑉𝑛 is a
finite subcollection of 𝒢 which covers 𝑓(𝑋). We have verified Criterion 4.1, hence 𝑓(𝑋)
is a compact set in 𝑌.
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the open set 𝑋 ∖ 𝐹
[AI]

Figure 4.1: if the sets 𝑈1,… , 𝑈𝑛, 𝑋 ∖ 𝐹 cover 𝑋, then the sets 𝑈1,… , 𝑈𝑛 cover 𝐹

Corollary.

Compactness is a topological property.

Proof. If 𝑋 is compact and 𝑋
∼
−→
𝑓

𝑌, then 𝑓 is continuous, so 𝑓(𝑋) must be compact by
Theorem 4.2. Yet 𝑓(𝑋) = 𝑌 because 𝑓, being a homeomorphism, is surjective.

If we found a compact space 𝑋, the next result allows us to construct new compact spaces.

Proposition 4.3.

A closed subset of a compact is compact.

Proof. Let 𝑋 be a compact topological space and let 𝐹 be a closed subset of 𝑋. We want
to use Criterion 4.1, so we let 𝐹 be covered by a family 𝒞 of open subsets of 𝑋. Then

𝒞 ∪ {𝑋 ∖ 𝐹}

is an open cover for the whole of 𝑋.
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Since 𝑋 is compact, 𝒞 ∪ {𝑋 ∖ 𝐹} has a finite subcover of 𝑋. This finite subcover of 𝑋
can be 𝑈1,… , 𝑈𝑛 or 𝑈1,… , 𝑈𝑛, 𝑋 ∖ 𝐹. In either case, the sets 𝑈1,… , 𝑈𝑛 form a finite
subcollection of 𝒞 which must cover 𝐹. (This last step is illustrated by Figure 4.1.)

The above is as much as we can say about compact spaces without assuming additional
topological properties besides compactness. We will now see that compactness works very
well together with the Hausdorff property:

Proposition 4.4.

In a Hausdorff space, a compact set is closed.

Proof. Let 𝑋 be a Hausdorff topological space and let 𝐾 be a compact subset of 𝑋.
Letting 𝑧 be any point of 𝑋 ∖𝐾, it is enough to prove:

(†) 𝑧 ∈ 𝑋 ∖ 𝐾 ⇒ ∃ open 𝑉 (𝑧): 𝑧 ∈ 𝑉 (𝑧) and 𝑉 (𝑧) ⊆ 𝑋 ∖𝐾.

Indeed, if (†) holds then, in the same way as in the proof of Proposition 3.4 𝑋 ∖ 𝐾 =
⋃𝑧∈𝑋∖𝐾 𝑉 (𝑧) is an open set, so 𝐾 is closed.

For each 𝑥 ∈ 𝐾, the Hausdorff property gives us open neighbourhoods

𝑈(𝑥) ∋ 𝑥, 𝑉𝑥(𝑧) ∋ 𝑧 ∶ 𝑈(𝑥) ∩ 𝑉𝑥(𝑧) = ∅.

The open sets {𝑈(𝑥) ∶ 𝑥 ∈ 𝐾} cover 𝐾, so by Criterion 4.1 there is a finite subcollection
𝑈(𝑥1),… ,𝑈(𝑥𝑛) which still covers 𝐾. Put

𝑉 (𝑧) = 𝑉𝑥1
(𝑧) ∩ ⋯ ∩ 𝑉𝑥𝑛

(𝑧).

(The construction of the open neighbourhood 𝑉 (𝑧) is illustrated by Figure 4.2.)

As a finite intersection of open sets, 𝑉 (𝑧) is open. Moreover, by construction 𝑉 (𝑧) ∩
𝑈𝑥𝑖

(𝑧) ⊆ 𝑉𝑥𝑖
(𝑧) ∩ 𝑈𝑥𝑖

(𝑧) = ∅ and so

𝑉 (𝑧) ∩ (𝑈(𝑥1) ∪ ⋯ ∪ 𝑈(𝑥𝑛)) =
𝑛
⋃
𝑖=1

𝑉 (𝑧) ∩ 𝑈(𝑥𝑖) = ∅.
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Figure 4.2: the construction of the open neighbourhood 𝑉 (𝑧) which does not intersect 𝐾

Since 𝐾 is contained in the union 𝑈(𝑥1) ∪ ⋯ ∪ 𝑈(𝑥𝑛), it follows that 𝑉 (𝑧) does not
intersect 𝐾. We have therefore proved (†) and the Proposition.

We arrive at a result which generalises important results from real analysis known as inverse
function theorems.

Theorem 4.5: the Topological Inverse Function Theorem, 𝒯IFT.

If 𝐾 is a compact space, 𝑌 is a Hausdorff space and 𝑓∶ 𝐾 → 𝑌 is a continuous
bijection, then 𝑓 is a homeomorphism.

Proof. 𝑓 is already assumed to be bijective and continuous, hence to show that 𝑓 is a
homeomorphism, we need to prove that the inverse function 𝑓−1 ∶ 𝑌 → 𝐾 is continuous.
We will use the closed set criterion of continuity, Proposition 2.5. Let 𝐹 ⊂ 𝐾 be closed
in 𝐾. The 𝑓−1-preimage of 𝐹 is (𝑓−1)−1(𝐹) = 𝑓(𝐹):

• a closed subset of a compact is compact (Proposition 4.3) so 𝐹 is compact,
• a continuous image of a compact is compact (Theorem 4.2), so 𝑓(𝐹) is compact,
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• a compact subset of the Hausdorff space 𝑌 is closed (Proposition 4.4), so 𝑓(𝐹) is
closed in 𝑌.

We have shown that the function 𝑓−1 is such that the preimage of a closed set is closed.
Hence, by the closed set criterion of continuity, 𝑓−1 is continuous.

References for the week 4 notes

[Sutherland] gives detailed definitions of cover, subcover and open cover in [Sutherland, Defini-
tions 13.3-13.5] and then defines a compact subset of 𝑋 straight away in [Sutherland, Definition
13.6], without defining a compact space first. In this way, [Sutherland] avoids the Criterion of
Compactness for a subset 4.1 altogether — the Criterion becomes the definition of compactness!

Our Theorem 4.2, a continuous image of a compact is compact, is [Sutherland, Proposition 13.15].

The key idea behind Figure 4.1 is by OpenAI ChatGPT (prompt: generate a diagram to illustrate
the proof that a closed subset of a compact is compact). YB changed the shapes of sets to make
the diagram less cluttered.

Proposition 4.3, a closed subset of a compact is compact is [Sutherland, Proposition 13.20].
Proposition 4.4, a compact is closed in Hausdorff, is [Sutherland, Proposition 13.12]. Theorem 4.5,
the topological inverse function theorem, is [Sutherland, Proposition 13.26].

https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://chatgpt.com
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631
https://www.librarysearch.manchester.ac.uk/permalink/44MAN_INST/bofker/alma992983392236401631

	ch1
	ch2
	ch2ex
	ch2exans
	ch3
	ch3ex
	ch3exans
	ch4
	ch4ex
	ch4exans
	ch5
	ch5ex
	ch5exans
	ch7
	ch7ex
	ch7exans
	ch8
	ch8ex
	ch8exans
	ch9
	ch9exans

