
Week 4

Exercises (answers at end)

Version 2023-11-04. To accessible online version of these exercises

Exercise 4.1. Write down the weight enumerator of Rep(n,F2), more generally of Rep(n,Fq).

Notation: below, C ⊆ Fn
q is a linear code, d(C) = d, and t =

[
d−1
2

]
.

Exercise 4.2. Prove that each vector a of weight ≤ t in the space Fn
q is a unique coset

leader (that is, w(a) is strictly less than weights of all other vectors in its coset a+ C).

Hint. If a ̸= b are in the same coset, show that d ≤ w(a) + w(b). Then use d− t > t.

Exercise 4.3 (important fact about perfect linear codes — needed for exam). Assume C

is perfect. Use the Hamming bound to show that the number of cosets equals #St(0), i.e.,

there as many cosets as vectors of weight ≤ t in the space Fn
q . Deduce that every coset has

a unique coset leader, and that the coset leaders are exactly the vectors of weight ≤ t.

Exercise 4.4 (not done in tutorial). Find standard arrays for binary codes with each of the

following generator matrices. For each code, determine whether every coset has a unique

coset leader (i.e., if there is exactly one coset leader in each coset). Find the probability of

an undetected / uncorrected error for BSC (p) and argue whether the code is worth using

for this channel, compared to transmitting unencoded information.

G1 =

[
1 0

0 1

]
, G2 =

[
1 0 1

0 1 1

]
, G3 =

[
1 0 1 1 0

0 1 0 1 1

]
.

Exercise 4.5 (more weight enumerators — not done in tutorial). (a) As usual, let WC(x, y)

denote the weight enumerator of a q-ary linear code C. Show that WC(1, 0) = 1 and that

WC(1, 1) = qk where k = dimC.

(b) Show that the weight enumerator of the trivial binary code Fn
2 is WFn

2
(x, y) = (x+ y)n.

Can you write WFn
q
(x, y) in a similar form?

(c) Write down WE3(x, y). Can you suggest a compact way to write WEn(x, y)?
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Week 4

Exercises — solutions

Version 2023-11-04. To accessible online version of these exercises

Exercise 4.1. Write down the weight enumerator of Rep(n,F2), more generally of Rep(n,Fq).

Answer to E4.1. Rep(n,F2) has one codevector of weight 0 and one codevector of weight

n. Hence WRep(n,F2)(x, y) = xn + yn.

Exercise: show that WRep(n,Fq)(x, y) = xn + (q − 1)yn.

Notation: below, C ⊆ Fn
q is a linear code, d(C) = d, and t =

[
d−1
2

]
.

Exercise 4.2. Prove that each vector a of weight ≤ t in the space Fn
q is a unique coset

leader (that is, w(a) is strictly less than weights of all other vectors in its coset a+ C).

Hint. If a ̸= b are in the same coset, show that d ≤ w(a) + w(b). Then use d− t > t.

Answer to E4.2. If a, b are in the same coset, then by properties of cosets, c := a− b is

a codevector. If a ̸= b then c ̸= 0 and so d ≤ w(c) = w(a − b) = d(a, b). By the triangle

inequality, d(a, b) ≤ d(a, 0) + d(0, b) = w(a) + w(b). Thus, d ≤ w(a) + w(b) as claimed.

Now assume w(a) ≤ t. Then w(b) ≥ d− w(a) ≥ d− t. But t < d
2 so d− t > t. We have

w(b) ≥ d− t > t ≥ w(a). This shows that a has strictly minimal weight among the vectors

in its coset, and so is the unique coset leader.

Exercise 4.3 (important fact about perfect linear codes — needed for exam). Assume C

is perfect. Use the Hamming bound to show that the number of cosets equals #St(0), i.e.,

there as many cosets as vectors of weight ≤ t in the space Fn
q . Deduce that every coset has

a unique coset leader, and that the coset leaders are exactly the vectors of weight ≤ t.

Answer to E4.3. By the previous exercise, the vectors a ∈ St(0) are unique coset leaders

of #St(0) distinct cosets. The total number of cosets is
qn

#C
.
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Now if C is perfect, then #C =
qn

#St(0)
(the right-hand side is the Hamming bound), and

so
qn

#C
= #St(0). Thus if C is perfect, cosets with a unique coset leader of weight ≤ t

exhaust all cosets, as claimed.

Exercise 4.4 (not done in tutorial). Find standard arrays for binary codes with each of the

following generator matrices. For each code, determine whether every coset has a unique

coset leader (i.e., if there is exactly one coset leader in each coset). Find the probability of

an undetected / uncorrected error for BSC (p) and argue whether the code is worth using

for this channel, compared to transmitting unencoded information.

G1 =

[
1 0

0 1

]
, G2 =

[
1 0 1

0 1 1

]
, G3 =

[
1 0 1 1 0

0 1 0 1 1

]
.

Answer to E4.4. G1 generates the trivial binary code of length 2. Because the code is

the whole space F2
2, its standard array consists of one row:

00 01 10 11

(the order of the codevectors after 00 is arbitrary). The only coset is the trivial coset which

has only one coset leader, 00.

G2 generates E3, the even weight code of length 3. It has 4 codevectors and 2 cosets:

000 101 011 110

001 100 010 111

Note that the non-trivial coset has three coset leaders; any of them could be put in column 1.

G3: list all the 4 codevectors and then use the algorithm for constructing the standard array.

One possible answer is given below:

00000 10110 01011 11101

10000 00110 11011 01101

01000 11110 00011 10101

00100 10010 01111 11001

00010 10100 01001 11111

00001 10111 01010 11100

11000 01110 10011 00101

01100 11010 00111 10001

Coset leaders of weight 0 and 1 are the only coset leaders in their cosets. Coset leaders of

weight 2 are not unique: e.g., 11000 and 00101 are coset leaders of the same coset.

Error probabilities. The code generated by G1 is the trivial code, so using it is the same

as sending unencoded information.
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The code generated by G2 has weight enumerator WE3(x, y) = x3 + 3xy2. Hence an

undetected error occurs with probability

Pundetect(E3) = WE3(1− p, p)− (1− p)3 = 3(1− p)p2 ∼ 3p2.

Note that this is of the same order as p2 but at a rate of 2/3 (recall the code considered in

the chapter with worse rate 1/2).

The probability of an uncorrected error here is 1−Pcorr(E3) = 1−(α0(1−p)3+α1p(1−p)2)
where α0 = 1 (one coset leader of weight 0) and α1 = 1 (one coset leader of weight 1) . We

have 1−Pcorr(E3) = 1−((1−p)3+p(1−p)2) = 1−(1−p+p)(1−p)2 = 1−(1−p)2 ∼ 2p.

The code E3 does not improve the probability of incorrect decoding. Indeed, Hamming’s

theory says that E3 has no error-correcting capability and can only be used for error detection.

The code generated by G3 has weight enumerator x5 + 2x2y3 + xy4. Hence

Pundetect = 2(1− p)2p3 + (1− p)p4 ∼ 2p3.

If p = 0.01, this is ≈ 2× 10−6, which is 5,000 times better than without encoding.

Furthermore, looking at the coset leaders, we find one coset leader of weight 0, α0 = 1; five

coset leaders of weight 1, α1 = 5; two coset leaders of weight 2, α2 = 2. This gives

1− Pcorr = 1− (α0(1− p)5 + α1p(1− p)4 + α2p
2(1− p)3)

= 1− ((1− p)2 + 5p(1− p) + 2p2)(1− p)3

= 8p2 − 14p3 + 9p4 − 2p5 ∼ 8p2.

If p = 0.01, incorrect decoding occurs with probability ≈ 8 × 10−4, which is 12.5 times

better than without encoding.

Of course, this improvement in reliability comes at a price: the rate of the code is only 0.4,

meaning that we have to transmit 2.5 times as much information.

Exercise 4.5 (more weight enumerators — not done in tutorial). (a) As usual, let WC(x, y)

denote the weight enumerator of a q-ary linear code C. Show that WC(1, 0) = 1 and that

WC(1, 1) = qk where k = dimC.

(b) Show that the weight enumerator of the trivial binary code Fn
2 is WFn

2
(x, y) = (x+ y)n.

Can you write WFn
q
(x, y) in a similar form?

(c) Write down WE3(x, y). Can you suggest a compact way to write WEn(x, y)?

Answer to E4.5. (a) Recall WC(x, y) =
∑

c∈C xn−w(c)yw(c). If y = 0, the only non-zero

term in this sum is the term without y which corresponds to the (unique) zero codevector

of the linear code C; thus, WC(x, 0) = xn and WC(1, 0) = 1. Also, WC(1, 1) =
∑

c∈C 1 =

#C = qk.
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(b) To work out WFn
q
(x, y), write it in the form WFn

q
(x, y) =

∑n
i=0Aix

n−iyi where Ai =

#{v ∈ Fn
q : w(v) = i}. Note that w(v) = d(v, 0), and in the proof of the Hamming bound

we calculated the number of words at distance i from 0 (or from any other fixed vector) to

be
(
n
i

)
(q − 1)i. Hence

WFn
q
(x, y) =

n∑
i=0

(
n

i

)
(q − 1)ixn−iyi = (x+ (q − 1)y)n.

(c) The even weight code E3 is {000, 011, 101, 110}, so that WE3(x, y) = x3 + 3xy2. The

weight enumerator of En will be obtained in the lectures as an application of the MacWilliams

identity.


