
Week 1

Continuity of the inverse function.
Infinite series

Version 2025/02/02 To accessible online version of this chapter

These notes are being developed to reflect the content of the Real Analysis course as
taught in the 2024/25 academic year. The first half of the course is lectured by Dr
Yuri Bazlov. Questions and comments on these lecture notes should be directed to
Yuri.Bazlov@manchester.ac.uk. The second half will be lectured by Dr Mark Coleman.

Pre-requisite: Mathematical Foundations and Analysis

We build upon what was achieved in theMathematical Foundations and Analysis (MFA)
course, taught in Semester 1. Limit of a sequence, continuous function and limit of
a function remain key notions in Real Analysis, which develops the “analysis” part of
MFA further. Important functions of real variable, used in MFA, will be formally defined,
and their properties proved. This includes the power function 𝑥𝛼 with arbitrary real 𝛼;
exponential function 𝑎𝑥 and the logarithm; trigonometric functions.

Hence, the Real Analysis course will constantly require the students to call on their
knowledge of definitions and results introduced in MFA.
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An informal introduction (not covered in lectures)

The first part of the course will introduce infinite series. Recall Euler’s identity

𝑒𝑖𝜋 + 1 = 0,

often brought up as an example of a beautiful mathematical result. But what exactly is
there to prove? Let us try to understand this equation and its connection to Real Analysis.

First of all, 𝑒 is the irrational number discovered by Jacob Bernoulli in 1683 (and initially
written as “𝑏”) in his study of compound interest. It is defined as

𝑒 = lim
𝑛→∞

(1 + 1
𝑛
)
𝑛
, equivalently, 𝑒 =

∞
∑
𝑛=0

1
𝑛!

= 1 + 1
1
+ 1

1 ⋅ 2
+ 1

1 ⋅ 2 ⋅ 3
+ … .

Both formulae involve an infinite process, which in practice can only approximate 𝑒 to
a given precision. Note how the limit of a sequence, defined in MFA, appears next to
something new: a “sum of infinitely many numbers”.

What is 𝑒𝑖𝜋, though? Raising 𝑒 to an imaginary power is done via the rule

𝑒𝑧 = 1 + 𝑧
1!

+ 𝑧2

2!
+ 𝑧3

3!
+ …

This is where the meaning of Euler’s identity starts to come across. The “infinite sum”
for 𝑒𝑖𝜋 breaks down into the real and imaginary parts, leading to two equations,

1 − 𝜋2

2!
+ 𝜋4

4!
− 𝜋6

6!
+ ⋯ = −1 and 𝜋 − 𝜋3

3!
+ 𝜋5

5!
− 𝜋7

7!
+ ⋯ = 0.

Adding up ten terms of each “infinite sum”, we obtain approximately −1.000000004 and
−5.3 × 10−10 (check the calculation here!) which suggests that if we keep adding new
terms generated by the same rule, in the limit we will indeed get −1 and 0, respectively.
This is mysterious: 𝜋 is transcendental, so no finite sum like this can be a rational number.
A proper way to prove that 𝜋 satisfies these equations is to express cos(𝑥) and sin(𝑥),
functions given by ratios of sides in a right-angled triangle where 𝑥 is in radians, as

cos(𝑥) = 1 − 𝑥2

2!
+ 𝑥4

4!
− 𝑥6

6!
+ … , sin(𝑥) = 𝑥 − 𝑥3

3!
+ 𝑥5

5!
− 𝑥7

7!
+ …

https://livemanchesterac-my.sharepoint.com/:x:/g/personal/yuri_bazlov_manchester_ac_uk/EU-QIBzwTi9ButjcPQExnGkBQAuwsKejWu-oR5qFrmjPGQ?e=ZGjJlJ
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These infinite expansions, apparently known already to Madhava (ca. 1400), are enor-
mously important in mathematics and have many compelling applications in the sciences.
To prove these formulas is the same as to prove the formula 𝑒𝑖𝑥 = cos(𝑥)+ 𝑖 sin(𝑥) (used
in MFA without proof). Complete and rigorous theory, leading to these expansions, is part
of what is covered in the Real Analysis course. In the first part of MATH11112, we will:

• formally define infinite series and make sense of “sums of infinitely many numbers”;
• learn about ways to tell whether a given series converges, i.e., has a sum;
• understand power series which consist of power of 𝑥 with some coefficients, and see

why they define “smooth” continuous functions of 𝑥 if they converge.

Expansion of functions as power series is intimately connected with differentiation, a
formal treatment of which begins the second part of the course. Higher derivatives of a
function are key to approximating the function by polynomials, called Taylor polynomials.
It is this theory that allows us to write a “good” function as sum of a Taylor series.

The course concludes with the third part devoted to rigorous treatment of integration. A
key result is the Fundamental Theorem of Calculus, which demonstrates that integration
is truly a reverse operation to differentiation.

Further study of series: a power series is a sum of infinitely many functions of the
form 𝑎𝑥𝑛. In 1807, Joseph Fourier publicised a class of scientific problems which require
calculating infinite sums of more sophisticated functions, such as 𝑎 sin(𝑛𝑥). The theory
of series that we develop in Real Analysis serves as a foundation for the study of Fourier
series and other advanced series in mathematics, science and engineering.

End of the informal introduction.

The Inverse Function Theorem

We begin with a result which could have been proved in Mathematical Foundations and
Analysis (MFA), given more time. The Inverse Function Theorem will be used to define a
function 𝑥 ↦ 𝑥𝑟 where 𝑟 is rational. First, a definition.
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Definition.

Let 𝐴 ⊆ ℝ. A real-valued function 𝑓 on 𝐴 is
increasing, if ∀𝑥, 𝑥′ ∈ 𝐴, 𝑥 < 𝑥′ ⟹ 𝑓(𝑥) ≤ 𝑓(𝑥′);
strictly increasing, if ∀𝑥, 𝑥′ ∈ 𝐴, 𝑥 < 𝑥′ ⟹ 𝑓(𝑥) < 𝑓(𝑥′);
decreasing, if ∀𝑥, 𝑥′ ∈ 𝐴, 𝑥 < 𝑥′ ⟹ 𝑓(𝑥) ≥ 𝑓(𝑥′);
strictly decreasing, if ∀𝑥, 𝑥′ ∈ 𝐴, 𝑥 < 𝑥′ ⟹ 𝑓(𝑥) > 𝑓(𝑥′).

A function satisfying one of the above conditions is called (strictly) monotone.
The above applies to sequences which are functions on 𝐴 = ℕ.

We can use monotone sequences to calculate limits of functions. The following is an
MFA-style result:

Lemma 1.1: limit of 𝑓 from the left via strictly increasing sequences.

For a function 𝑓, defined on (𝑎, 𝑏), the following are equivalent:
(i) lim𝑥→𝑏− 𝑓(𝑥) = ℓ.
(ii) For all strictly increasing sequences (𝑥𝑛) such that 𝑥𝑛 → 𝑏 as 𝑛 → ∞, one

has lim𝑛→∞ 𝑓(𝑥𝑛) = ℓ.

Remark: the Lemma can be expressed in words as follows:

The limit of 𝑓 at 𝑏 from the left is the common limit of all sequences (𝑓(𝑥𝑛))𝑛≥1,
where a sequence (𝑥𝑛)𝑛≥1 is strictly increasing and converges to 𝑏.

Proof of the Lemma (not given in class). (i) ⇒ (ii): let 𝜀 > 0 be arbitrary. First, we use
the definition of lim𝑥→𝑏− 𝑓(𝑥) = ℓ to generate 𝛿 > 0 such that |𝑓(𝑥) − ℓ| < 𝜀 for all
𝑥 ∈ (𝑏 − 𝛿, 𝑏).

Now we let (𝑥𝑛)𝑛≥1 be a strictly increasing sequence, and use the above 𝛿 > 0 in the
definition of “𝑥𝑛 → 𝑏 as 𝑛 → ∞” to generate 𝑁 ∈ ℕ such that 𝑛 ≥ 𝑁 implies |𝑥𝑛−𝑏| < 𝛿.
That is, 𝑥𝑁, 𝑥𝑁+1,… ∈ (𝑏 − 𝛿, 𝑏 + 𝛿). Since the sequence is strictly increasing with limit
𝑏, no term can exceed 𝑏, so in fact 𝑥𝑁, 𝑥𝑁+1,… ∈ (𝑏 − 𝛿, 𝑏).
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ℓ = lim
𝑥→𝑏−

𝑓(𝑥)

𝑏𝑥1 𝑥2 𝑥3
… 𝑥

𝑓(𝑥)

Figure 1.1: Lemma 1.1 says that the limit of 𝑓 at 𝑏 from the left is the same as the common
limit of all sequences 𝑓(𝑥1), 𝑓(𝑥2),… where 𝑥1, 𝑥2,… strictly increase and converge to 𝑏

But then, by the choice of 𝛿, |𝑓(𝑥𝑛)−ℓ| < 𝜀 for all 𝑛 ≥ 𝑁. We have shown that ℓ satisfies
the definition of limit for the sequence (𝑓(𝑥𝑛))𝑛≥1, and so (ii) is proved.

(ii) ⇒ (i): to prove the contrapositive of this implication, we assume that the statement
“lim𝑥→𝑏− 𝑓(𝑥) = ℓ” is false. This means that there exists some 𝜀0 > 0 such that for all
𝛿 > 0, the interval (𝑏 − 𝛿, 𝑏) contains a point, say 𝑥(𝛿), with |𝑓(𝑥(𝛿)) − ℓ| ≥ 𝜀0.

Choose 𝛿1 = 1 and construct 𝑥(𝛿1) ∈ (𝑏 − 𝛿1, 𝑏). We have |𝑓(𝑥(𝛿1)) − ℓ| ≥ 𝜀0.

Then, for each 𝑛 ≥ 2, choose 𝛿𝑛 = min( 1𝑛 , 𝑏−𝑥(𝛿𝑛−1)) and construct 𝑥(𝛿𝑛) ∈ (𝑏−𝛿𝑛, 𝑏).

Since 𝑏 − 1
𝑛 < 𝑥(𝛿𝑛) < 𝑏, by the Sandwich Rule 𝑥(𝛿𝑛) → 𝑏 as 𝑛 → ∞. Also, since

𝑥(𝛿𝑛) > 𝑏 − (𝑏 − 𝑥(𝛿𝑛−1)) = 𝑥(𝛿𝑛−1), the sequence 𝑥(𝛿1), 𝑥(𝛿2),… is strictly increasing.

We still have, by construction, that |𝑓(𝑥(𝛿𝑛)) − ℓ| ≥ 𝜀0 for all 𝑛. Therefore, ℓ fails to
satisfy the definition of the limit of the sequence (𝑓(𝑥(𝛿𝑛)))𝑛≥1, i.e. (ii) is false.

The Lemma is illustrated by Figure 1.1. The next result mirrors the Lemma to deal with
a limit from the right:
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Corollary: limit of 𝑓 from the right via strictly decreasing sequences.

For a function 𝑓, defined on (𝑎, 𝑏), the following are equivalent:
(i) lim𝑥→𝑎+ 𝑓(𝑥) = ℓ.
(ii) For all strictly decreasing sequences (𝑥𝑛) such that 𝑥𝑛 → 𝑎 as 𝑛 → ∞, one

has lim𝑛→∞ 𝑓(𝑥𝑛) = ℓ.

In other words,

the limit of 𝑓 at 𝑎 from the right is the common limit of all sequences
(𝑓(𝑥𝑛))𝑛≥1, where a sequence (𝑥𝑛)𝑛≥1 is strictly decreasing and converges
to 𝑎.

We are now ready to prove the first theorem of the course.

Theorem 1.2: the Inverse Function Theorem for strictly increasing functions.

A strictly increasing continuous function 𝑓∶ [𝑎, 𝑏] → [𝑓(𝑎), 𝑓(𝑏)] has an inverse
𝑔∶ [𝑓(𝑎), 𝑓(𝑏)] → [𝑎, 𝑏] which is strictly increasing and continuous.

Proof. 𝑓∶ [𝑎, 𝑏] → [𝑓(𝑎), 𝑓(𝑏)] is surjective, because for every 𝑑 ∈ [𝑓(𝑎), 𝑓(𝑏)] the Inter-
mediate Value Theorem (and its corollary in MFA) gives 𝑐 in [𝑎, 𝑏] such that 𝑓(𝑐) = 𝑑.

A strictly increasing 𝑓 is injective: indeed, if 𝑥1 ≠ 𝑥2, then either 𝑥1 < 𝑥2 and so
𝑓(𝑥1) < 𝑓(𝑥2), or 𝑥1 > 𝑥2 and so 𝑓(𝑥1) > 𝑓(𝑥2). In either case 𝑓(𝑥1) ≠ 𝑓(𝑥2).

We have shown that 𝑓 is bijective, hence it has an inverse 𝑔 = 𝑓−1 ∶ [𝑓(𝑎), 𝑓(𝑏)] → [𝑎, 𝑏].

We prove that 𝑔 is strictly increasing by contradiction. Assume not, then there exist 𝑦1,
𝑦2 such that 𝑦1 < 𝑦2 and 𝑔(𝑦1) ≥ 𝑔(𝑦2). Since 𝑓 is increasing, 𝑓(𝑔(𝑦1)) ≥ 𝑓(𝑔(𝑦2)).
Since 𝑓 = 𝑔−1, this reads 𝑦1 ≥ 𝑦2, but at the same time 𝑦1 < 𝑦2, a contradiction.

We prove that 𝑔 is continuous at an arbitrary point 𝑑 of its domain by verifying the
criterion of continuity, seen in MFA:

lim
𝑦→𝑑

𝑔(𝑦) = 𝑔(𝑑).
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By results from MFA, this is equivalent to

lim
𝑦→𝑑−

𝑔(𝑦) = lim
𝑦→𝑑+

𝑔(𝑦) = 𝑔(𝑑).

We first show that lim𝑦→𝑑− 𝑔(𝑦) = 𝑔(𝑑). We would like to use Lemma 1.1 for this, so we
let (𝑦𝑛) be a strictly increasing sequence in [𝑓(𝑎), 𝑓(𝑏)] which converges to 𝑑. Since 𝑔 is
a strictly increasing function, (𝑔(𝑦𝑛)) is a strictly increasing sequence; it is also bounded
(lies in [𝑎, 𝑏]), hence by a result from MFA, (𝑔(𝑦𝑛)) has a limit, say 𝑐, in [𝑎, 𝑏].

Then by Lemma 1.1, lim𝑛→∞ 𝑓(𝑔(𝑦𝑛)) = lim𝑥→𝑐− 𝑓(𝑥) which is 𝑓(𝑐) as 𝑓 is continuous.
Since 𝑓 = 𝑔−1, this says that lim𝑛→∞ 𝑦𝑛 = 𝑓(𝑐). Thus, 𝑑 = 𝑓(𝑐), hence 𝑔(𝑑) = 𝑐.

We have proved that the common limit of all sequences (𝑔(𝑦𝑛)), where 𝑦𝑛 strictly increases
and converges to 𝑑, is 𝑔(𝑑). By Lemma 1.1, this means that lim𝑦→𝑑− 𝑔(𝑦) = 𝑔(𝑑).

The proof that lim𝑦→𝑑+ 𝑔(𝑦) = 𝑔(𝑑) is completely similar, based on the Corollary to
Lemma 1.1, and we omit it. Continuity of 𝑔 at 𝑑 is proved.

Example: the 𝑝th root function.

Let 𝑝 ∈ ℕ. Show that the 𝑝th power function [0,+∞) → [0,+∞), 𝑥 ↦ 𝑥𝑝, has a
continuous inverse (denoted 𝑦 ↦ 𝑝

√𝑦 and called the 𝑝th root function).

Solution: define 𝑓∶ [0,+∞) → [0,+∞) by 𝑓(𝑥) = 𝑥𝑝. Then 𝑓 is strictly increasing on
[0,+∞). Apply Inverse Function Theorem 1.2 to the restriction [0, 𝑏]

𝑓
−→ [0, 𝑏𝑝] to get a

continuous inverse 𝑝
√ ∶ [0, 𝑏𝑝] → [0, 𝑏]. Since 𝑏 > 0 can be made arbitrarily large, this

defines the continuous function 𝑝
√ on all of [0,+∞).

We compose continuous, strictly increasing functions to define a rational power function:

Example: raising to rational power 𝑝
𝑞 where 𝑝 ∈ ℤ, 𝑞 ∈ ℕ.

Define 𝑥
𝑝
𝑞 = ( 𝑞

√
𝑥)𝑝. This is a continuous function of 𝑥 where 𝑥 ∈ (0,+∞).

Remark: one can deduce from the definition of a rational power that

𝑥 > 1, 𝑟, 𝑠 ∈ ℚ, 𝑟 < 𝑠 ⟹ 𝑥𝑟 < 𝑥𝑠.



Continuity of the inverse function. Infinite series 8

This allows us to formally define arbitrary real powers of 𝑥:

Definition: 𝑥𝛼 where 𝑥 > 0 and 𝛼 ∈ ℝ.

If 𝑥 ≥ 1, define 𝑥𝛼 = sup{𝑥𝑟 ∶ 𝑟 ∈ ℚ, 𝑟 ≤ 𝛼}.
If 0 < 𝑥 < 1, define 𝑥𝛼 = (1/𝑥)−𝛼.

A disadvantage of this definition is that proving the expected properties of powers such as
𝑥𝛼𝑥𝛽 = 𝑥𝛼+𝛽 requires work. We will soon obtain a more useful expression for powers via
the exponential function.

Infinite series: definition

Definition: infinite series, convergent series, sum.

For real numbers 𝑎𝑛, an infinite series is an expression of the form
∞
∑
𝑛=1

𝑎𝑛 (also
written as 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 +… , ∑𝑛≥1 𝑎𝑛 or just ∑𝑎𝑛).
The 𝑛th partial sum of this series is the finite sum of terms up to and including 𝑎𝑛:
𝑠𝑛 = 𝑎1 +⋯+ 𝑎𝑛 =

𝑛
∑
𝑖=1

𝑎𝑖.
If the sequence of partial sums converges: lim𝑛→∞ 𝑠𝑛 = 𝑠, we say that the series
∞
∑
𝑛=1

𝑎𝑛 is convergent with sum 𝑠, and write
∞
∑
𝑛=1

𝑎𝑛 = 𝑠.

Remarks on the definition: (i) ∑∞
𝑛=1 𝑎𝑛 = 𝑠 is a actually a shorthand which means “the

series ∑∞
𝑛=1 𝑎𝑛 is convergent with sum 𝑠”.

(ii) Any series that is not convergent is said to be a divergent series.

(iii) A series can start from 𝑛 = 𝑁 (any integer) instead of 𝑛 = 1: 𝑎𝑁+𝑎𝑁+1+⋯ =
∞
∑
𝑛=𝑁

𝑎𝑛.
For example, it is common to start from 𝑛 = 0. The 𝑛th partial sum will still be the sum
which ends with 𝑎𝑛: e.g., for the series 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 +… ,

• 𝑎0 is the 0th partial sum,
• 𝑎0 + 𝑎1 is the 1st partial sum, 𝑎0 + 𝑎1 + 𝑎2 is the 2nd partial sum, and so on.
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Basic examples of convergent/divergent series are discussed in week 1 supervision classes.

Alert: a strict definition of convergence.

The definition of convergence of the series
∞
∑
𝑛=1

𝑎𝑛, used in Real Analysis, is very
strict: if the number sequence 𝑎1, 𝑎1 + 𝑎2, 𝑎1 + 𝑎2 + 𝑎3,… does not have a limit,
then the series has no sum.
Weaker definitions can assign a “sum” to some particular types of series which
we consider divergent: Cesàro sum, Abel sum etc. They are used in specialist
applications which are beyond this course.

The geometric series

The next example is simple yet important: we will see that more complicated series can
be studied by comparing them to a geometric series. We revisit a result seen in MFA.

Proposition 1.3: convergence and sum of geometric series.

Let 𝑎, 𝑟 ∈ ℝ. The geometric series with initial term 𝑎 and ratio 𝑟,

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 +⋯ =
∞
∑
𝑛=0

𝑎𝑟𝑛,

is convergent if |𝑟| < 1, with sum 𝑎
1 − 𝑟

.

Proof. The 𝑛th partial sum of the series is 𝑠𝑛 = 𝑎(1 + 𝑟 + 𝑟2 +⋯+ 𝑟𝑛). The calculation

(1 + 𝑟 + 𝑟2 +⋯+ 𝑟𝑛)(1 − 𝑟)

= 1 − 𝑟 + 𝑟 − 𝑟2 + 𝑟2 − 𝑟3 +⋯+ 𝑟𝑛 − 𝑟𝑛+1

= 1 − 𝑟𝑛+1

where the intermediate terms cancel, gives us the formula

𝑠𝑛 = 𝑎1 − 𝑟𝑛+1

1 − 𝑟
.
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If |𝑟| < 1, we recall from MFA that 𝑟𝑛+1 tends to 0 as 𝑛 → ∞, so by Algebra of Limits
of convergent sequences,

𝑠 = lim
𝑛→∞

𝑠𝑛 = 𝑎1 − 0
1 − 𝑟

= 𝑎
1 − 𝑟

.

The sum of the series, is, by definition, the limit of partial sums if it exists. Hence the
sum of the geometric series is 𝑎/(1 − 𝑟) as claimed.

Convergence of series with non-negative terms

Unlike the geometric series, usually there is no nice formula for the 𝑛th partial sum 𝑠𝑛. We
still want to decide if a series is convergent, so we prove theorems known as “convergence
tests”. Our first few tests work for series where all terms are non-negative.

Theorem 1.4: boundedness test for non-negative series.

Let a series 𝑎1 + 𝑎2 +… have 𝑎𝑛 ≥ 0 for all 𝑛. The following are equivalent:
(i) the partial sums 𝑠1, 𝑠2,… are bounded above;
(ii) the series is convergent.

If (i) and (ii) hold, the sum of the non-negative series is the least upper bound,
sup{𝑠𝑛 ∶ 𝑛 ≥ 1}, of its partial sums.

Proof. The partial sums of a non-negative series form an increasing sequence, because
𝑠𝑛+1 = 𝑠𝑛 + 𝑎𝑛+1 ≥ 𝑠𝑛 for all 𝑛. We know from MFA that an increasing sequence
(𝑠𝑛)𝑛≥1 of real numbers has a limit iff it is bounded above, and then the limit is the
supremum of the terms of the sequence.

Corollary: only two convergence types for non-negative series.

A non-negative series 𝑎1 + 𝑎2 +… is either
• convergent with a non-negative finite sum:

∞
∑
𝑛=1

𝑎𝑛 = 𝑠, 0 ≤ 𝑠 < +∞, or
• divergent if sup{𝑠𝑛 ∶ 𝑛 ≥ 1} = +∞.
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In the latter case we use the symbolic notation “
∞
∑
𝑛=1

𝑎𝑛 = +∞” and say that the non-
negative series diverges to +∞.

Alert.

Notation
∞
∑
𝑛=1

𝑎𝑛 = +∞ (to mean that the series is divergent) and
∞
∑
𝑛=1

𝑎𝑛 < +∞ (to
mean that the series is convergent) is used only for series with non-negative terms!

The next test is used very often.

Theorem 1.5: the comparison test for non-negative series.

Assume that 0 ≤ 𝑎𝑛 ≤ 𝑏𝑛 for all 𝑛. If the series 𝑏1 + 𝑏2 + … is convergent (with
sum 𝑇), then the series 𝑎1 + 𝑎2 +… is convergent (with sum at most 𝑇).
If 𝑎1 + 𝑎2 +… is divergent, then 𝑏1 + 𝑏2 +… is also divergent.

Proof. Write 𝑠𝑛 = 𝑎1 +⋯+ 𝑎𝑛 and 𝑡𝑛 = 𝑏1 +⋯+ 𝑏𝑛. As 𝑎1 ≤ 𝑏1, 𝑎2 ≤ 𝑏2 etc, we have
𝑠𝑛 ≤ 𝑡𝑛, where 𝑡𝑛 ≤ 𝑇 by Theorem 1.4. Hence 𝑠1, 𝑠2,… have an upper bound 𝑇, so by
boundedness test, Theorem 1.4, the series 𝑎1 + 𝑎2 +… is convergent.

The sum ∑∞
𝑛=1 𝑎𝑛 is the least upper bound of (𝑠𝑛)𝑛≥1, and 𝑇 is an upper bound. Hence

∑∞
𝑛=1 𝑎𝑛 ≤ 𝑇.

Now “𝑎1+𝑎2+… is divergent ⇒ 𝑏1+𝑏2+… is divergent” follows by contrapositive.

To use the Comparison Test, we need to compare with some easy series ∑𝑏𝑛, yet the
Test does not tell us how to find it. Hence we develop further convergence tests.

Theorem 1.6: the Ratio Test for positive series.

For a positive series ∑𝑛≥1 𝑎𝑛, suppose that the limit ℓ = lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

exists. Then if
0 ≤ ℓ < 1, the series is convergent, and if ℓ > 1, the series is divergent.

Proof. The case 0 ≤ ℓ < 1. Choose a positive 𝜀 such that ℓ + 𝜀 < 1. For example,
𝜀 = (1 − ℓ)/2 works.
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Since ℓ = lim𝑛→∞
𝑎𝑛+1
𝑎𝑛

, there exists 𝑁 such that 𝑎𝑛+1
𝑎𝑛

< ℓ + 𝜀 for all 𝑛 ≥ 𝑁. Write this
as 𝑎𝑛+1 < 𝑟𝑎𝑛, where 𝑟 = ℓ + 𝜀. Then 𝑎𝑁+2 < 𝑟𝑎𝑁+1 < 𝑟2𝑎𝑁, and, repeating this, we
obtain 𝑎𝑁+𝑘 < 𝑟𝑘𝑎𝑁. We have

𝑎1 + 𝑎2 +⋯+ 𝑎𝑁+𝑘 ≤ 𝑎1 +⋯+ 𝑎𝑁−1 + 𝑎𝑁 + 𝑟𝑎𝑁 +⋯+ 𝑟𝑘𝑎𝑁
≤ (𝑎1 +⋯+ 𝑎𝑁−1) +

𝑎𝑁
1 − 𝑟

.

The upper bound that we have obtained is a finite constant which does not depend on 𝑘.
Thus, partial sums of the series 𝑎1 + 𝑎2 +… are bounded, so by Theorem 1.4, the series
is convergent.

The case ℓ > 1. Put 𝜀 = ℓ − 1. There is 𝑁 such that ℓ − 𝜀 < 𝑎𝑛+1
𝑎𝑛

for 𝑛 ≥ 𝑁. But
ℓ − 𝜀 = 1, so 1 < 𝑎𝑛+1

𝑎𝑛
, equivalently 𝑎𝑛 < 𝑎𝑛+1, for 𝑛 ≥ 𝑁. In particular, all 𝑎𝑛 for

𝑛 > 𝑁 are greater than the positive constant 𝑎𝑁. Hence 𝑠𝑛 ≥ (𝑛 − 𝑁)𝑎𝑁 which is
unbounded.

Alert: the Ratio test may be inconclusive.

If ℓ = 1 or the limit does not exist, this test does not tell us anything: the harmonic
series ∑𝑛≥1

1
𝑛 is divergent (see the next Chapter), and the series of inverse squares

∑𝑛≥1
1
𝑛2 is convergent (see the first exercise sheet). Both have ℓ = 1.

In the following test (not taught in lectures, not examinable), we use the 𝑛th root function
𝑛
√

, defined earlier.

Theorem 1.7: The 𝑛th Root Test for non-negative series.

For a non-negative series ∑𝑛≥1 𝑎𝑛, suppose that the limit ℓ = lim𝑛→∞
𝑛
√𝑎𝑛 exists.

Then if 0 ≤ ℓ < 1, the series is convergent, and if ℓ > 1, the series is divergent.

Remark: Again, if ℓ = 1 or the limit does not exist, this test does not tell us anything.

Proof. (not given in class: very similar to the proof of the Ratio Test; not examinable.)
The case 0 ≤ ℓ < 1. Choose a positive 𝜀 so that 𝑟 = ℓ+𝜀 is still less than 1; for example,
𝜀 = (1 − ℓ)/2 works.
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By definition of limit, there is 𝑁 such that 𝑛
√𝑎𝑛 < ℓ+𝜀 = 𝑟 for all 𝑛 ≥ 𝑁. Then 𝑎𝑛 < 𝑟𝑛

for 𝑛 ≥ 𝑁, so partial sums of the series are bounded by 𝑎1 + ⋯ + 𝑎𝑁 + 1
1−𝑟 , implying

convergence.

The case ℓ > 1. Put 𝜀 = ℓ − 1. Since ℓ is the limit of 𝑛
√𝑎𝑛, there is 𝑁 such that

ℓ − 𝜀 < 𝑛
√𝑎𝑛 for 𝑛 ≥ 𝑁. But ℓ − 𝜀 = 1, so 1 < 𝑛

√𝑎𝑛, equivalently 1 < 𝑎𝑛, for 𝑛 ≥ 𝑁.
We therefore have 𝑠𝑛 ≥ 𝑛 −𝑁 which is unbounded.



Week 2

The Harmonic Series. Rearrangements.
Series with positive and negative terms

Version 2025/02/04 To accessible online version of this chapter

We begin the chapter with a series which is an example to many results in this course. In
particular, it shows that a positive series with lim𝑛→∞

𝑎𝑛+1
𝑎𝑛

= 1 may be divergent:

Proposition 2.1: the Harmonic Series is divergent.

The following series, called the harmonic series, is divergent:

1 + 1
2
+ 1

3
+ 1

4
+ ⋯ =

∞
∑
𝑛=1

1
𝑛
= +∞.

Proof. We have

𝑠2𝑛 − 𝑠𝑛 = 1
𝑛 + 1

+ 1
𝑛 + 2

+ ⋯+ 1
2𝑛

≥ 𝑛 × 1
2𝑛

= 1
2
.

Hence 𝑠2 ≥ 𝑠1 + 1
2 , 𝑠4 ≥ 𝑠2 + 1

2 ≥ 𝑠1 + 2
2 , and, continuing, we get 𝑠2𝑛 ≥ 𝑠1 + 𝑛

2 . This
shows that the sequence (𝑠𝑛)𝑛≥1 is unbounded.

Comment: we can see that the partial sums 𝑠𝑛 of the harmonic series diverge to +∞ but
“slowly”. How large must 𝑛 be so that 𝑠𝑛 ≥ 10? Do you need to add up more than a

14

https://personalpages.manchester.ac.uk/staff/yuri.bazlov/analysis/notes/ch2.html
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thousand terms of the harmonic series to get a sum of at least 10? Open the spreadsheet
which tabulates partial sums of the harmonic series and scroll down to find out!

Rearrangements of a series with non-negative terms

When we add up finitely many numbers, the answer does not depend on the order of
summands. Yet for infinite series this is more intricate: putting terms in a different order
gives a very different sequence of partial sums. Let us formally define a rearrangement.

Definition: rearrangement.

A series ∑∞
𝑛=1 𝑏𝑛 is called a rearrangement of a series ∑∞

𝑛=1 𝑎𝑛 if there exists a
bijective function 𝜎∶ ℕ → ℕ such that 𝑏𝑛 = 𝑎𝜎(𝑛) for all 𝑛.

We now prove that rearranging a non-negative series does not change the sum.

Theorem 2.2: the rearrangement theorem for non-negative series.

Suppose that all terms in a series 𝑎1+𝑎2+… are non-negative. Then all rearrange-
ments of this series have the same sum, and if the series 𝑎1 + 𝑎2 +… is divergent,
then all rearrangements are divergent.

Proof. Let 𝜎∶ ℕ → ℕ be a bijection so that 𝑎𝜎(1) + 𝑎𝜎(2) +… is a rearrangement of the
original series. We let

𝑠𝑛 = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛, 𝑡𝑛 = 𝑎𝜎(1) + 𝑎𝜎(2) +⋯+ 𝑎𝜎(𝑛)

be the 𝑛th partial sum of the series, respectively, rearranged series. Denote by 𝑀(𝑛) the
largest among the indices 𝜎(1),… , 𝜎(𝑛). Then 𝑎𝜎(1), 𝑎𝜎(2),… , 𝑎𝜎(𝑛) is a sublist of the list
𝑎1,… , 𝑎𝑀(𝑛) of non-negative real numbers, and so

𝑡𝑛 ≤ 𝑠𝑀(𝑛).

https://livemanchesterac-my.sharepoint.com/:x:/g/personal/yuri_bazlov_manchester_ac_uk/EbblCkb6qQ5Fi7rtn7fIUUIBn66Vog8v5kILbgu4SVwz4g?e=ENpGcN
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If ∑∞
𝑛=1 𝑎𝑛 is convergent with sum 𝑆 < +∞, then 𝑠𝑀(𝑛) ≤ 𝑆, and so 𝑡𝑛 ≤ 𝑆, for all 𝑛.

By the boundedness test, Theorem 1.4, the rearranged series is convergent with
∞
∑
𝑛=1

𝑎𝜎(𝑛) ≤
∞
∑
𝑛=1

𝑎𝑛,

which proves that rearranging a non-negative series cannot increase its sum.

But the series ∑∞
𝑛=1 𝑎𝑛 can also be viewed as a rearrangement of ∑∞

𝑛=1 𝑎𝜎(𝑛), via the
bijective function 𝜎−1. Since rearranging cannot increase the sum, we must conclude that

∞
∑
𝑛=1

𝑎𝑛 ≤
∞
∑
𝑛=1

𝑎𝜎(𝑛).

From the two inequalities we conclude that the series and its rearrangement have the same
sum. Finally, our observation that ∑∞

𝑛=1 𝑎𝑛 is a rearrangement of ∑∞
𝑛=1 𝑎𝜎(𝑛) proves, by

contrapositive, the implication “∑∞
𝑛=1 𝑎𝑛 is divergent ⇒ ∑∞

𝑛=1 𝑎𝜎(𝑛) is divergent”.

Summation of double series

For theoretical and practical reasons, we would like to be able to calculate a sum of all
numbers in a double series, which is defined as an array infinite in two directions,

𝑎00 𝑎01 𝑎02 𝑎03 …
𝑎10 𝑎11 𝑎12 𝑎13 …
𝑎20 𝑎21 𝑎22 𝑎23 …
𝑎30 𝑎31 𝑎32 𝑎33 …
⋮ ⋮ ⋮ ⋮ ⋱

where 𝑎𝑚,𝑛 ∈ ℝ for all 𝑚,𝑛 ≥ 0. Double series allow several methods of summation.
First, we can enumerate all terms of a double series by non-negative integers, which gives
a (single) series. (Two such enumerations will be shown later in Figure 2.2.) Secondly, let

• RowSum𝑚 = the sum of the infinite series 𝑎𝑚0 + 𝑎𝑚1 + 𝑎𝑚2 +… if it exists;
• ColumnSum𝑛 = the sum of the infinite series 𝑎0𝑛 + 𝑎1𝑛 + 𝑎2𝑛 +… if it exists;
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• DiagSum𝑑 = the finite sum 𝑎𝑑0 + 𝑎𝑑−1,1 +⋯+ 𝑎0𝑑, equivalently ∑
𝑚+𝑛=𝑑

𝑎𝑚,𝑛;

• SquareSum𝑏×𝑏 = ∑{𝑎𝑚,𝑛 ∶ 0 ≤ 𝑚 ≤ 𝑏, 0 ≤ 𝑛 ≤ 𝑏}.

Figure 2.1 illustrates how some of these sums are calculated. The next result considers

𝑎00 𝑎01 𝑎02 𝑎03 …

𝑎10 𝑎11 𝑎12 𝑎13 …

𝑎20 𝑎21 𝑎22 𝑎23 …

𝑎30 𝑎31 𝑎32 𝑎33 …

⋮ ⋮ ⋮ ⋮

RowSum0

RowSum1

RowSum2

ColumnSum
0

ColumnSum
1

ColumnSum
2

DiagSum0

DiagSum1

DiagSum2

Figure 2.1: Row sums, column sums and diagonal sums in a double series

summing a double series by enumeration, by squares, by diagonals, by rows and by columns.
If the terms are all non-negative, the methods will return the same answer:

Proposition 2.3: summation of double series with non-negative terms.

Suppose that a double series (𝑎𝑚,𝑛) has non-negative terms, and a way to enumerate
all these terms gives a single series with sum 𝑆. Then:

1. all ways to enumerate the terms 𝑎𝑚,𝑛 will result in series with sum 𝑆;
2. lim

𝑏→∞
SquareSum𝑏×𝑏 = 𝑆 and

∞
∑
𝑑=0

DiagSum𝑑 = 𝑆;

3.
∞
∑
𝑚=0

RowSum𝑚 = 𝑆 and
∞
∑
𝑛=0

ColumnSum𝑛 = 𝑆.
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Proof. 1. All the different ways of arranging the terms 𝑎𝑚,𝑛 in a single series are rear-
rangements of one another, hence must have the same sum, 𝑆, by Theorem 2.2.

2. To show that
∞
∑
𝑑=0

DiagSum𝑑 = 𝑆 and lim
𝑏→∞

SquareSum𝑏×𝑏 = 𝑆, we consider two special
ways to enumerate the 𝑎𝑚,𝑛, shown in Figure 2.2.

𝑎00 𝑎01 𝑎02 𝑎03 …

𝑎10 𝑎11 𝑎12 𝑎13 …

𝑎20 𝑎21 𝑎22 𝑎23 …

𝑎30 𝑎31 𝑎32 𝑎33 …

⋮ ⋮ ⋮ ⋮

(A)

𝑎00 𝑎01 𝑎02 𝑎03 …

𝑎10 𝑎11 𝑎12 𝑎13 …

𝑎20 𝑎21 𝑎22 𝑎23 …

𝑎30 𝑎31 𝑎32 𝑎33 …

⋮ ⋮ ⋮ ⋮

(B)

Figure 2.2: Two examples of enumerating terms of a double series

In Figure 2.2(A), partial sums of the resulting single series (which, by part 1., converge to
𝑆) contain a subsequence of sums of the form DiagSum0 +DiagSum1 +⋯+DiagSum𝑑.
All subsequences of a convergent sequence have the same limit, so this subsequence must
also converge to 𝑆.

Figure 2.2(B) similarly shows that lim𝑏→∞ SquareSum𝑏×𝑏 must be 𝑆.

3. The top row of the 𝑏×𝑏 square sum is 𝑎00+𝑎01+⋯+𝑎0𝑏. This is a partial sum which
is less than or equal to the infinite sum RowSum0. In the same way, the remaining rows
of SquareSum𝑏×𝑏 are bounded above by RowSum1,… ,RowSum𝑏. Therefore,

SquareSum𝑏×𝑏 ≤
𝑏

∑
𝑚=0

RowSum𝑚.

Taking the limit as 𝑏 → ∞, we have

𝑆 = lim
𝑏→∞

SquareSum𝑏×𝑏 ≤
∞
∑
𝑚=0

RowSum𝑚.
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It remains to show that the opposite inequality, ∑∞
𝑚=0 RowSum𝑚 ≤ 𝑆, also holds. Since

the infinite sum ∑∞
𝑚=0 RowSum𝑚 is the limit of partial sums, it is enough to show that

for every fixed 𝑀, the sum ∑𝑀
𝑚=0 RowSum𝑚 is at most 𝑆.

By definition of the row sums, we have

RowSum0 = lim𝑛→∞ 𝑎00 + 𝑎01 +⋯+ 𝑎0𝑛,
RowSum1 = lim𝑛→∞ 𝑎10 + 𝑎11 +⋯+ 𝑎1𝑛,

⋮
RowSum𝑀 = lim𝑛→∞ 𝑎𝑀,0 + 𝑎𝑀,1 +⋯+ 𝑎𝑀,𝑛.

Adding together these limits, we have

𝑀
∑
𝑚=0

RowSum𝑚 = lim
𝑛→∞

(sum over the 𝑀 × 𝑛 rectangle).

Yet any rectangle is contained in a 𝑏 × 𝑏 square for large enough 𝑏, and by part 2., sums
over all squares are ≤ 𝑆. Hence ∑𝑀

𝑚=0 RowSum𝑚 is a limit of a sequence bounded above
by 𝑆, which means that ∑𝑀

𝑚=0 RowSum𝑚 ≤ 𝑆.

We have proved that 𝑆 ≤ ∑∞
𝑚=0 RowSum𝑚 ≤ 𝑆, so ∑∞

𝑚=0 RowSum𝑚 = 𝑆. Finally, the
argument for the column sums, ∑∞

𝑛=0 ColumnSum𝑛 = 𝑆, is the same as for row sums,
and we omit it. The Proposition is proved.

Alert: changing the order of summation.

In analysis, passing from sum by rows to sum by columns is known as changing the
order of summation. We have proved that

∞
∑
𝑚=0

(
∞
∑
𝑛=0

𝑎𝑚,𝑛) =
∞
∑
𝑛=0

(
∞
∑
𝑚=0

𝑎𝑚,𝑛),

assuming that all 𝑎𝑚,𝑛 are non-negative. The equality does not hold in general, see
example below. Finding conditions (such as non-negativity) which allow changing
the order of infinite summation is an important problem in Analysis.
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Example: if we drop the assumption that all 𝑎𝑚,𝑛 are non-negative, the “sum of the
double series” may depend on the method of summation. Consider the double series

1 −1 0 0 0 …
0 1 −1 0 0 …
0 0 1 −1 0 …
0 0 0 1 −1 …
0 0 0 0 1 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

𝑎𝑚,𝑛 =

⎧{{
⎨{{⎩

1, if 𝑚 = 𝑛,

−1, if 𝑚 = 𝑛− 1,

0, otherwise.

We have RowSum𝑚 = 0 for all 𝑚. Yet ColumnSum0 = 1 and ColumnSum𝑛 = 0 for all
𝑛 ≥ 1, and so

∞
∑
𝑚=0

(
∞
∑
𝑛=0

𝑎𝑚,𝑛) = 0,
∞
∑
𝑛=0

(
∞
∑
𝑚=0

𝑎𝑚,𝑛) = 1.

Series with terms of different signs. The Nullity Test

We will now develop several convergence tests for infinite series without the assumption
that all terms are non-negative. Our first test can only show divergence:

Theorem 2.4: the nullity test for divergence.

If 𝑎𝑛↛0 as 𝑛 → ∞, then the series
∞
∑
𝑛=1

𝑎𝑛 is divergent.

Proof. Write 𝑠𝑛 for the 𝑛th partial sum. Assume that the series is convergent, i.e.,
lim
𝑛→∞

𝑠𝑛 = 𝑠 for some real number 𝑠. Then lim
𝑛→∞

𝑠𝑛−1 = 𝑠 as well. By AoL of convergent
sequences, lim𝑛→∞(𝑠𝑛−𝑠𝑛−1) = 𝑠−𝑠 = 0. But 𝑠𝑛−𝑠𝑛−1 = 𝑎𝑛 and so lim𝑛→∞ 𝑎𝑛 = 0.
We proved:

the series
∞
∑
𝑛=1

𝑎𝑛 is convergent ⇒ lim
𝑛→∞

𝑎𝑛 = 0,

which is the contrapositive of, hence is equivalent to, the statement of the Theorem.
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Example: application of the nullity test.

Show that the series (a) ∑𝑛≥1
𝑛

𝑛+1 and (b) ∑𝑛≥0(−1)𝑛 are divergent.

Solution: (a) lim𝑛→∞
𝑛

𝑛+1 = lim𝑛→∞
1

1+1/𝑛 = 1 ≠ 0 so by the Nullity Test, the series is
divergent. (b) lim𝑛→∞(−1)𝑛 does not exist and in particular is not 0, so ∑𝑛≥0(−1)𝑛 is
also a divergent series.

Remark: if 𝑎𝑛 → 0 as 𝑛 → ∞, the Nullity Test is inconclusive: the series
∞
∑
𝑛=1

𝑎𝑛 may still
be divergent. The Harmonic Series is an example.

Algebra of infinite sums

The next result allows us to construct new convergent series out of existing examples.

Proposition 2.5: Algebra of Infinite Sums (AoIS).

If ∑∞
𝑛=1 𝑎𝑛 is convergent with sum 𝑆 and ∑∞

𝑛=1 𝑏𝑛 is convergent with sum 𝑇,
then for any real numbers 𝜆, 𝜇 the series ∑∞

𝑛=1(𝜆𝑎𝑛 +𝜇𝑏𝑛) is convergent with sum
𝜆𝑆 + 𝜇𝑇.

Proof. The 𝑛th partial sum of the series∑∞
𝑛=1(𝜆𝑎𝑛+𝜇𝑏𝑛) is (𝜆𝑎1+𝜇𝑏1)+⋯+(𝜆𝑎𝑛+𝜇𝑏𝑛).

This is a finite sum, so we can rearrange to get 𝜆𝑠𝑛 + 𝜇𝑡𝑛, where 𝑠𝑛 = 𝑎1 +⋯+ 𝑎𝑛 and
𝑡𝑛 = 𝑏1 + ⋯ + 𝑏𝑛 (partial sums). We are given that 𝑠𝑛 → 𝑆 and 𝑡𝑛 → 𝑇 as 𝑛 → ∞, so
by AoL of convergent sequences, 𝜆𝑠𝑛 + 𝜇𝑡𝑛 → 𝜆𝑆 + 𝜇𝑇 as claimed.

Alert: no × or / for series.

Unlike the Algebra of Limits of convergent sequences, AoIS does not allow multi-
plication or division of series.
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Absolute convergence

The following definition comes from “absolute value”, the old name for the modulus |𝑎|.

Definition: absolutely convergent.

The series ∑∞
𝑛=1 𝑎𝑛 is absolutely convergent if ∑∞

𝑛=1 |𝑎𝑛| < +∞.

The next very strong test can establish convergence of many series.

Theorem 2.6: Absolute Convergence Theorem; the Infinite Triangle Inequality.

Suppose the series ∑∞
𝑛=1 𝑎𝑛 is absolutely convergent. Then:

1. there are non-negative 𝑝𝑛, 𝑞𝑛 such that ∑∞
𝑛=1 𝑝𝑛 < +∞, ∑∞

𝑛=1 𝑞𝑛 < +∞
and 𝑎𝑛 = 𝑝𝑛 − 𝑞𝑛 for all 𝑛;

2. ∑∞
𝑛=1 𝑎𝑛 is convergent;

3. ∣∑∞
𝑛=1 𝑎𝑛∣ ≤ ∑∞

𝑛=1 |𝑎𝑛| (infinite triangle inequality).

Proof. For a real number 𝑎, denote

𝑎+ =
⎧{
⎨{⎩

𝑎, if 𝑎 ≥ 0,

0, if 𝑎 < 0,
𝑎− =

⎧{
⎨{⎩

0, if 𝑎 ≥ 0,

−𝑎, if 𝑎 < 0.

1. Assume that the series ∑𝑎𝑛 is absolutely convergent, meaning that ∑∞
𝑛=1 |𝑎𝑛| has

finite sum 𝑀 < +∞. Put 𝑝𝑛 = 𝑎+𝑛 and 𝑞𝑛 = 𝑎−𝑛 for all 𝑛. Then we have

0 ≤ 𝑝𝑛, 𝑞𝑛 ≤ |𝑎𝑛|, 𝑎𝑛 = 𝑝𝑛 − 𝑞𝑛, |𝑎𝑛| = 𝑝𝑛 + 𝑞𝑛.

By Comparison Test, Theorem 1.5, the series ∑∞
𝑛=1 𝑝𝑛 is convergent, with some finite

sum 𝑃 ≤ 𝑀, and likewise ∑∞
𝑛=1 𝑞𝑛 = 𝑄 ≤ 𝑀.

2. By AoIS, the series ∑∞
𝑛=1 𝑎𝑛 = ∑∞

𝑛=1(𝑝𝑛 − 𝑞𝑛) is convergent with sum 𝑃 −𝑄.

3. Since 0 ≤ 𝑃 ,𝑄 ≤ 𝑀, we have |𝑃 −𝑄| ≤ 𝑀, which reads ∣∑∞
𝑛=1 𝑎𝑛∣ ≤ ∑∞

𝑛=1 |𝑎𝑛|.
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Remark. How to test the series ∑∞
𝑛=1 |𝑎𝑛| for convergence? For example, we can use the

Comparison Test, the Ratio Test or the Root Test.

The next result shows that rearrangements of absolutely convergent series are as well-
behaved as rearrangements of non-negative series.

Claim 2.7: rearrangements of absolutely convergent series and double series.

(a) All rearrangements of absolutely convergent ∑𝑛 𝑎𝑛 converge with the same sum.
(b) If ∑𝑚,𝑛 |𝑎𝑚,𝑛| < +∞, summing the double series (𝑎𝑚,𝑛) by rows, by columns,
by diagonals and by squares gives the same answer. In particular, changing the order
of summation is allowed: ∑∞

𝑚=0 ∑
∞
𝑛=0 𝑎𝑚,𝑛 = ∑∞

𝑛=0 ∑
∞
𝑚=0 𝑎𝑚,𝑛.

Explanation: (a) If ∑𝑎𝑛 is absolutely convergent, Theorem 2.6 gives us non-negative 𝑝𝑛
and 𝑞𝑛 such that 𝑎𝑛 = 𝑝𝑛 − 𝑞𝑛 for all 𝑛 and ∑𝑝𝑛 = 𝑃 < +∞, ∑𝑞𝑛 = 𝑄 < +∞.
Then 𝑎𝜎(𝑛) = 𝑝𝜎(𝑛) − 𝑞𝜎(𝑛) and so by AoIS, ∑𝑎𝜎(𝑛) = (∑𝑝𝜎(𝑛)) − (∑𝑞𝜎(𝑛)). Yet by
Rearrangement Theorem 2.2 for non-negative series, ∑𝑝𝜎(𝑛) = 𝑃 and ∑𝑞𝜎(𝑛) = 𝑄, and
so ∑𝑎𝜎(𝑛) = 𝑃 −𝑄, regardless of the rearrangement.

(b) Similarly to (a), write 𝑎𝑚,𝑛 = 𝑝𝑚,𝑛 − 𝑞𝑚,𝑛 with non-negative 𝑝𝑚,𝑛 and 𝑞𝑚,𝑛 and
∑
𝑚,𝑛

𝑝𝑚,𝑛 = 𝑃 < +∞, ∑
𝑚,𝑛

𝑞𝑚,𝑛 = 𝑄 < +∞. Then by Proposition 2.3 and AoIS, all

methods of summation of the double series 𝑎𝑚,𝑛 will return the answer 𝑃 −𝑄.

The Alternating Series Test

If a series with positive and negative terms is not absolutely convergent, it might still
satisfy the assumptions of the next test which shows convergence.

Theorem 2.8: The Alternating Series Test.

Let 𝑎1, 𝑎2,… ≥ 0 be a decreasing sequence which tends to zero. Then the series
𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 +⋯ = ∑∞

𝑛=1(−1)𝑛+1𝑎𝑛 is convergent.
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Proof. Similarly to the Absolute Convergence Theorem, the idea is to write the given series
as a linear combination of two convergent series; yet in this case, we cannot use two series
with non-negative terms. Consider two series:

Series 1: (𝑎1 − 𝑎2) +0 +(𝑎3 − 𝑎4) +0 +(𝑎5 − 𝑎6) +0 +…
Series 2: 𝑎2 −𝑎2 +𝑎4 −𝑎4 +𝑎6 −𝑎6 +…

To obtain a partial sum of Series 1, we start with 𝑎1, subtract 𝑎2, add 𝑎3, subtract 𝑎4,
add 𝑎5 etc. By assumption, 𝑎2, 𝑎3,… decrease, so each time we subtract more than we
add; hence all partial sums are bounded above by 𝑎1. Series 1 has non-negative terms,
hence is convergent by Boundedness Test, Theorem 1.4.

Series 2 has partial sums 𝑎2, 0, 𝑎4, 0, 𝑎6, 0 and so on. The 𝑛th partial sum is between 0
and 𝑎𝑛, and 𝑎𝑛 → 0 as 𝑛 → ∞. By Sandwich Rule the partial sums have limit 0, hence
Series 2 is convergent.

The required series 𝑎1−𝑎2+𝑎3−𝑎4+… is obtained by adding Series 2 to Series 1, hence
is convergent by Algebra of Infinite Sums, Proposition 2.5.

Example: Alternating Harmonic Series.

Show that 1 − 1
2 + 1

3 − 1
4 +⋯ = ∑∞

𝑛=1
(−1)𝑛+1

𝑛 is a convergent series.

Solution. ( 1𝑛)𝑛≥1 is a decreasing sequence which has limit 0. So by the Alternating Series
Test, Theorem 2.8, the series is convergent.

Remark: we are not ready to calculate the sum of the Alternating Harmonic Series just
yet. Methods from this course will allow us to prove that its sum is ln(2).

Conditional convergence. Rearrangements

We proved that absolute convergence implies convergence. Is the converse true? That is,
if a series converges, does it have to be absolutely convergent? Here is a counterexample:
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Example: a convergent series which is not absolutely convergent.

Show that the (convergent) alternating harmonic series 1 − 1
2 + 1

3 − 1
4 +… is not

absolutely convergent.

Solution. The series is convergent by the Alternating Series Test. But the series

1 + ∣−1
2 ∣ + ∣13 ∣ + ∣−1

4 ∣ + ⋯ = 1 + 1
2 + 1

3 + 1
4 +… ,

made up of absolute values, is the Harmonic Series which, as we proved, is divergent.

Series with this property have a special name:

Definition: conditionally convergent.

A series is conditionally convergent if it is convergent but not absolutely convergent.

Rearrangements of conditionally convergent series do not have the same sum:

Theorem 2.9: Riemann’s rearrangement theorem.

Suppose ∑∞
𝑛=1 𝑎𝑛 is a conditionally convergent series. Then for any real number 𝛼

there is a rearrangement of ∑∞
𝑛=1 𝑎𝑛 which converges with sum 𝛼. There is also a

rearrangement which diverges.

We do not go through the proof of this striking result in class, but it may later be added
as an appendix to this week’s notes (not examinable).
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Power series

Version 2025/02/12 To accessible online version of this chapter

Notice (Feb 2025): Week 3 lectures begin with the Alternating Series Test, Theo-
rem 2.8.

We now consider series where the 𝑛th term depends on a variable 𝑥 and we ask for which
𝑥 does the series converge. We study the simplest case of a series with 𝑥: power series.

Definition: power series.

Let 𝑐0, 𝑐1, 𝑐2,… be real numbers. A series of the form ∑∞
𝑛=0 𝑐𝑛𝑥

𝑛, which we also
write as 𝐶(𝑥), is called a power series in the variable 𝑥.

A power series can be convergent for some values of 𝑥 and divergent for others:

Example: geometric series as a power series.

Let 𝐺(𝑥) denote the power series 1 + 𝑥 + 𝑥2 + 𝑥3 + … Then 𝐺(𝑥) is convergent
when |𝑥| < 1 and divergent when |𝑥| ≥ 1. Indeed, for any given value of 𝑥, 𝐺(𝑥)
becomes a geometric series with ratio 𝑥, and we apply the known results.

The set of 𝑥 where 𝐺(𝑥) is convergent is the interval (−1, 1). We will show that the
picture for other power series is broadly similar, although their interval of convergence
can be closed, half open or open, or be the whole real line ℝ. We begin with a lemma.
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Lemma 3.1: absolute convergence for smaller modulus.

If, for a given 𝑥0 ∈ ℝ, the power series 𝐶(𝑥0) is convergent, then for all 𝑦 with
|𝑦| < |𝑥0|, 𝐶(𝑦) is absolutely convergent.

Proof. Assume 𝐶(𝑥0) = ∑∞
𝑛=0 𝑐𝑛𝑥

𝑛
0 is a convergent series. Then by the Nullity Test, the

sequence (𝑐𝑛𝑥𝑛
0 )𝑛≥0 has limit 0. Sequences that have a limit are bounded, so there exists

𝑀 ≥ 0 such that |𝑐𝑛𝑥𝑛
0 | ≤ 𝑀 for all 𝑛.

Given 𝑦: |𝑦| < |𝑥0|, set 𝑟 =
|𝑦|
|𝑥0|

. As |𝑟| < 1, the geometric series ∑
𝑛
𝑀𝑟𝑛 converges, and

0 ≤ |𝑐𝑛𝑦𝑛| = |𝑐𝑛𝑥𝑛
0 |𝑟𝑛 ≤ 𝑀𝑟𝑛 for all 𝑛.

Hence by the Comparison Test, ∑∞
𝑛=0 |𝑐𝑛𝑦

𝑛| is convergent. This means that the series
𝐶(𝑦) = ∑∞

𝑛=0 𝑐𝑛𝑦
𝑛 is absolutely convergent.

Corollary 3.2: the set of points where the power series is convergent.

The set of 𝑡 ∈ ℝ such that the series 𝐶(𝑡) is convergent is one of the following:
i. interval (−𝑅,𝑅), [−𝑅,𝑅], (−𝑅,𝑅] or [−𝑅,𝑅) where 𝑅 > 0;
ii. {0};
iii. ℝ.

We formally put 𝑅 = 0 in ii. and 𝑅 = ∞ in iii., so that there is a unique value
𝑅 ∈ [0,∞] such that 𝐶(𝑡) is absolutely convergent when |𝑡| < 𝑅 and divergent
when |𝑡| > 𝑅.

Proof. These are all the possible subsets 𝐼 of ℝ which contain 0 and have the property:
if 𝑥0 ∈ 𝐼 then 𝐼 contains the interval (−|𝑥0|, |𝑥0|), required by Lemma 3.1. See the
illustration in Figure 3.1.

Definition: interval of convergence, radius of convergence.

The set 𝐼 given in Corollary 3.2 is called the interval of convergence of the power
series 𝐶(𝑥), and 𝑅 ∈ [0,∞] is the radius of convergence.
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−𝑅 𝑅0 −𝑅 𝑅0 −𝑅 𝑅0 −𝑅 𝑅0

0 ℝ

Figure 3.1: The possible intervals 𝐼 of convergence of a power series

Remark: suppose the radius of convergence 𝑅 of 𝐶(𝑥) is strictly between 0 and ∞. At
𝑥 = 𝑅, the series 𝐶(𝑥) may

• be absolutely convergent; or
• be conditionally convergent; or
• be divergent.

At 𝑥 = −𝑅 one of the three options will also hold. We note that the series is absolutely
convergent at 𝑥 = 𝑅 iff it is absolutely convergent at 𝑥 = −𝑅, because ∑𝑛≥0 |𝑎𝑛𝑅

𝑛| and
∑𝑛≥0 |𝑎𝑛(−𝑅)𝑛| are the same series.

We have already obtained the following

Result: interval of convergence of 𝐺(𝑥) = ∑∞
𝑛=0 𝑥

𝑛.

𝐺(𝑥) = 1+𝑥+𝑥2+… has radius of convergence 1, interval of convergence (−1, 1).

We will use a practical method to find the interval of convergence of a power series:

Method: finding the interval of convergence.

1. Apply the Ratio Test to the non-negative series ∑∞
𝑛=0 |𝑎𝑛||𝑥|

𝑛.
2. The answer will show absolute convergence of ∑∞

𝑛=0 𝑎𝑛𝑥
𝑛 when |𝑥| < 𝑅,

where 𝑅 is the radius of convergence.
3. Use further tests to check convergence of ∑∞

𝑛=0 𝑎𝑛𝑥
𝑛 at 𝑥 = −𝑅 and 𝑥 = 𝑅.

Example 1: find the interval of convergence of the series ∑∞
𝑛=1

𝑥𝑛

𝑛 = 𝑥 + 𝑥2

2 + 𝑥3

3 +…
and determine the type of convergence at the endpoints of the interval.
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Solution. We apply the Ratio Test to the series ∑∞
𝑛=1

|𝑥𝑛|
𝑛 :

ℓ = lim
𝑛→∞

|𝑥𝑛+1|/(𝑛 + 1)
|𝑥𝑛|/𝑛

= lim
𝑛→∞

|𝑥| 𝑛
𝑛 + 1

= |𝑥| lim
𝑛→∞

1
1 + 1

𝑛
= |𝑥| 1

1 + 0
= |𝑥|.

If ℓ < 1, that is |𝑥| < 1, the series ∑∞
𝑛=1

𝑥𝑛

𝑛 is absolutely convergent. If |𝑥| > 1, the series
is not absolutely convergent. We conclude that the radius of convergence is 𝑅 = 1.

What happens when 𝑥 = ±1?

At 𝑥 = −1 the series ∑∞
𝑛=1

𝑥𝑛

𝑛 becomes −1 + 1
2 − 1

3 + 1
4 − … This is −1 times the

alternating harmonic series, convergent (conditionally) by the Alternating Series Test.

At 𝑥 = 1 the series is the harmonic series 1 + 1
2 + 1

3 + 1
4 +… , divergent. We have:

Result: the interval of convergence of ∑∞
𝑛=1

𝑥𝑛

𝑛 .

The interval of convergence is [−1, 1). At 𝑥 = −1 convergence is conditional.

Example 2: find the interval of convergence of the series ∑∞
𝑛=1 𝑛𝑥

𝑛 = 𝑥+2𝑥2+3𝑥3+…
and determine the type of convergence at the endpoints of the interval.

Solution. We apply the Ratio Test to the series ∑∞
𝑛=1 𝑛𝑥

𝑛:

ℓ = lim
𝑛→∞

(𝑛 + 1)|𝑥𝑛+1|
𝑛|𝑥𝑛|

= lim
𝑛→∞

|𝑥|𝑛 + 1
𝑛

= |𝑥|.

If ℓ < 1, that is |𝑥| < 1, the series ∑∞
𝑛=1

𝑥𝑛

𝑛 is absolutely convergent. If |𝑥| > 1, the series
is not absolutely convergent. We conclude that the radius of convergence is 𝑅 = 1.

At 𝑥 = ±1 the series is ∑∞
𝑛=1 𝑛(±1)𝑛, divergent by Nullity Test.

Result: the interval of convergence of ∑∞
𝑛=1 𝑛𝑥

𝑛.

The interval of convergence is (−1, 1).

Remark. A limitation of power series that it can only define a function on an interval
centred at zero. To overcome this, one can consider, for 𝑎 ∈ ℝ, power series at 𝑎:

∞
∑
𝑛=0

𝑐𝑛(𝑥 − 𝑎)𝑛.
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Such a series defines a function on an interval 𝐼 such that (𝑎−𝑅, 𝑎+𝑅) ⊆ 𝐼 ⊆ [𝑎−𝑅, 𝑎+𝑅]
where 𝑅 is the radius of convergence.

The function defined by a power series is continuous

Every power series 𝐶(𝑥) can be viewed as a real-valued function on 𝐼, its interval of
convergence. We claim that, at least on the open interval (−𝑅,𝑅), this function is
continuous. As 𝐶(𝑥) is an infinite sum of terms of the form 𝑐𝑛𝑥𝑛 which are continuous
functions of 𝑥, it makes sense to study the continuity of a sum of a series of functions.
We begin with the following

Proposition 3.3: infinite sum of increasing continuous functions.

Suppose each of the functions 𝑓1(𝑥), 𝑓2(𝑥),… is increasing and continuous on [𝑐, 𝑑],
and for each 𝑥 ∈ [𝑐, 𝑑] the series ∑∞

𝑚=1 𝑓𝑚(𝑥) is convergent with sum 𝐹(𝑥). Then
𝐹(𝑥) is a continuous function on [𝑐, 𝑑].

Proof. By criterion of continuity, we need to prove, for each 𝑏 ∈ (𝑐, 𝑑), that lim
𝑥→𝑏−

𝐹(𝑥) =
lim
𝑥→𝑏+

𝐹(𝑥) = 𝐹(𝑏). We will only prove that lim
𝑥→𝑏−

𝐹(𝑥) is 𝐹(𝑏); the limit lim
𝑥→𝑏+

is similar
and is left to the student. By Lemma 1.1, we need to show that

lim
𝑛→∞

𝐹(𝑥𝑛) = 𝐹(𝑏), (*)

given any strictly increasing sequence 𝑥1, 𝑥2,… with limit 𝑏. To prove (*), we sum the
double series 𝑎𝑚,𝑛 = 𝑓𝑚(𝑥𝑛) − 𝑓𝑚(𝑥𝑛−1),

𝑓1(𝑥2) − 𝑓1(𝑥1) 𝑓1(𝑥3) − 𝑓1(𝑥2) 𝑓1(𝑥4) − 𝑓1(𝑥3) …
𝑓2(𝑥2) − 𝑓2(𝑥1) 𝑓2(𝑥3) − 𝑓2(𝑥2) 𝑓2(𝑥4) − 𝑓2(𝑥3) …
𝑓3(𝑥2) − 𝑓3(𝑥1) 𝑓3(𝑥3) − 𝑓3(𝑥2) 𝑓3(𝑥4) − 𝑓3(𝑥3) …

⋮ ⋮ ⋮ ⋱

by two methods. The first method is summation by columns, where we calculate

ColumnSum𝑛 =
∞
∑
𝑚=1

𝑓𝑚(𝑥𝑛) − 𝑓𝑚(𝑥𝑛−1) = 𝐹(𝑥𝑛) − 𝐹(𝑥𝑛−1),
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so that ∑∞
𝑛=2 ColumnSum𝑛 = ∑∞

𝑛=2 𝐹(𝑥𝑛)−𝐹(𝑥𝑛−1). A partial sum (𝐹(𝑥2)−𝐹(𝑥1))+
(𝐹(𝑥3)−𝐹(𝑥2))+⋯+(𝐹(𝑥𝑛)−𝐹(𝑥𝑛−1)) of this series is telescoping: the intermediate
terms cancel, leaving 𝐹(𝑥𝑛) − 𝐹(𝑥1). The sum of the series is the limit of partial sums,
so ∞

∑
𝑛=2

ColumnSum𝑛 = lim
𝑛→∞

𝐹(𝑥𝑛) − 𝐹(𝑥1).

The second method is summation by rows: using telescoping sums again, we calculate

RowSum𝑚 =
∞
∑
𝑛=2

𝑓𝑚(𝑥𝑛) − 𝑓𝑚(𝑥𝑛−1) = lim
𝑛→∞

𝑓𝑚(𝑥𝑛) − 𝑓𝑚(𝑥1).

Here 𝑓𝑚 is continuous, so 𝑥𝑛 → 𝑏 as 𝑛 → ∞ implies lim𝑛→∞ 𝑓𝑚(𝑥𝑛) = 𝑓𝑚(𝑏). Therefore
∞
∑
𝑚=1

RowSum𝑚 =
∞
∑
𝑚=1

𝑓𝑚(𝑏) − 𝑓𝑚(𝑥1) = 𝐹(𝑏) − 𝐹(𝑥1).

Note that all the 𝑎𝑚,𝑛 are non-negative: 𝑥𝑛 > 𝑥𝑛−1, 𝑓𝑚 is increasing, so 𝑓𝑚(𝑥𝑛) ≥
𝑓𝑚(𝑥𝑛−1). Hence by Proposition 2.3, the sum of all the 𝑎𝑚,𝑛 does not depend on the
method of summation, which means that lim𝑛→∞ 𝐹(𝑥𝑛) − 𝐹(𝑥1) = 𝐹(𝑏) − 𝐹(𝑥1). This
proves (*) and the Proposition.

If we consider the function 𝑓𝑚(𝑥) = 𝑐𝑚𝑥𝑚 on, say, an interval [0, 𝑑], it can be increasing
or decreasing, depending on the sign of 𝑐𝑚. Recall that a function which is increasing on
[𝑐, 𝑑] or is decreasing on [𝑐, 𝑑] is called a monotone function. With this in mind, we give
a modified version of the previous result.

Proposition 3.4: absolutely convergent sum of monotone continuous functions.

Suppose each of the functions 𝑓1(𝑥), 𝑓2(𝑥),… is monotone and continuous on [𝑐, 𝑑],
and for each 𝑥 ∈ [𝑐, 𝑑] the series ∑∞

𝑚=1 𝑓𝑚(𝑥) is absolutely convergent and has
sum 𝐹(𝑥). Then 𝐹(𝑥) is a continuous function on [𝑐, 𝑑].

Proof (not given in class). We literally repeat the proof of Proposition 3.3, not including
the last paragraph which begins with the words “Note that all the 𝑎𝑚,𝑛 are non-negative.”:
𝑎𝑚,𝑛 = 𝑓𝑚(𝑥𝑛) − 𝑓𝑚(𝑥𝑛−1) may be negative, so we cannot use Proposition 2.3 to say
that the sum of the double series does not depend on the method of summation.
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Instead, we will use Claim 2.7. For that, we need to check that ∑𝑚,𝑛 |𝑎𝑚,𝑛| < +∞.
Note that in the 𝑚th row, all numbers 𝑎𝑚,2, 𝑎𝑚,3,… are either all non-negative if 𝑓𝑚 is
an increasing function, or all non-positive if 𝑓𝑚 is decreasing. That is,

∞
∑
𝑛=2

|𝑎𝑚,𝑛| = |𝑓𝑚(𝑥2) − 𝑓𝑚(𝑥1)| + |𝑓𝑚(𝑥3) − 𝑓𝑚(𝑥2)| + …

=

⎧
{{{
⎨
{{{
⎩

(𝑓𝑚(𝑥2) − 𝑓𝑚(𝑥1)) + (𝑓𝑚(𝑥3) − 𝑓𝑚(𝑥2)) + … ,

if 𝑓𝑚 is increasing,

−(𝑓𝑚(𝑥2) − 𝑓𝑚(𝑥1)) − (𝑓𝑚(𝑥3) − 𝑓𝑚(𝑥2)) − … ,

if 𝑓𝑚 is decreasing,

which is a telescopic series with sum |𝑓𝑚(𝑏)−𝑓𝑚(𝑥1)|. By the triangle inequality, |𝑓𝑚(𝑏)−
𝑓𝑚(𝑥1)| is bounded above by |𝑓𝑚(𝑏)| + |𝑓𝑚(𝑥1)|.

Therefore, ∑𝑚,𝑛 |𝑎𝑚,𝑛| ≤ ∑∞
𝑚=1 |𝑓𝑚(𝑏)|+∑∞

𝑚=1 |𝑓𝑚(𝑥1)|. This is finite by the assump-
tion about absolute convergence. So Claim 2.7 guarantees that summation of the 𝑎𝑚,𝑛

by colums gives the same answer as summation by rows, leading to the same conclusion
as in Proposition 3.3.

Theorem 3.5: a function defined by a power series is continuous.

Let 𝐶(𝑥) denote the sum of a power series with radius of convergence 𝑅. Then
𝐶(𝑥) is a continuous function on the interval (−𝑅,𝑅).

Proof. Let 𝐶(𝑥) = 𝑐0 + 𝑐1𝑥+ 𝑐2𝑥2 +… Each term 𝑐𝑚𝑥𝑚 is a continuous and monotone
function on [0, 𝑅), the convergence for |𝑥| < 𝑅 is absolute, so by Proposition 3.4, 𝐶(𝑥)
is continuous on [0, 𝑅).

On (−𝑅, 0], 𝐶(𝑥) is continuous for exactly the same reason. We have to split the interval
(−𝑅,𝑅) into (−𝑅, 0] and [0, 𝑅) because if 𝑚 is even, 𝑥𝑚 is not monotone on the whole
(−𝑅,𝑅) but is monotone on (−𝑅, 0] and on [0, 𝑅).

It is easy to check (using one-sided limits at 0) that a function, continuous on (−𝑅, 0]
and on [0, 𝑅), is continuous on (−𝑅,𝑅).
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Remark: we will use the Binomial Theorem which says that for 𝑥, 𝑦 ∈ ℝ and 𝑛 ≥ 0,
(𝑥 + 𝑦)𝑛 expands as (𝑛0)𝑥

𝑛 + (𝑛1)𝑥
𝑛−1𝑦 + (𝑛2)𝑥

𝑛−2𝑦2 + ⋯ + (𝑛𝑛)𝑦
𝑛 where (𝑛𝑖) = 𝑛!

(𝑛−𝑖)! 𝑖! .
The Binomial Theorem is taught in Probability I, and the standard proof is by induction.

The exponential function

Theorem 3.5 allows us to define new continuous functions by power series (with non-zero
radius of convergence). Here is the most important example.

Definition: the exponential function and the number 𝑒.

exp(𝑥) = 1 + 𝑥
1!

+ 𝑥2

2!
+ 𝑥3

3!
+ ⋯ =

∞
∑
𝑛=0

𝑥𝑛

𝑛!
, 𝑒 = exp(1).

Theorem 4.1: continuity and the law of the exponential.

exp is a continuous function on ℝ. One has exp(𝑥) exp(𝑦) = exp(𝑥+𝑦) for all 𝑥, 𝑦.
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Proof. Apply the Ratio Test to the series ∑∞
𝑛=0

|𝑥|𝑛
𝑛! to find ℓ = lim𝑛→∞

𝑥𝑛+1/(𝑛+1)!
|𝑥|𝑛/𝑛! =

lim𝑛→∞ |𝑥|/(𝑛 + 1) = 0 for all |𝑥|. Since 0 < 1, the power series exp(𝑥) is absolutely
convergent for all 𝑥 ∈ ℝ (the radius of convergence is 𝑅 = ∞). By Theorem 3.5, it
follows that exp(𝑥) is a continuous function on all of ℝ.

1 𝑦 𝑦2

2!
𝑦3

3!
…

𝑥 𝑥𝑦 𝑥𝑦2

2! 𝑥𝑦3

3!
…

𝑥2

2!
𝑥2

2! 𝑦
𝑥2

2!
𝑦2

2!
𝑥2

2!
𝑦3

3!
…

𝑥3

3!
𝑥3

3! 𝑦
𝑥3

3!
𝑦2

2!
𝑥3

3!
𝑦3

3!
…

⋮ ⋮ ⋮ ⋮

exp(𝑦)

𝑥 exp(𝑦)

𝑥2

2! exp(𝑦)

(𝑥 + 𝑦)0

(𝑥 + 𝑦)1

1
2!(𝑥 + 𝑦)2

Figure 4.1: The double series used to prove exp(𝑥) exp(𝑦) = exp(𝑥 + 𝑦)

To prove exp(𝑥) exp(𝑦) = exp(𝑥 + 𝑦), we compare two methods of summation of the
double series 𝑎𝑚,𝑛 = 𝑥𝑚

𝑚!
𝑦𝑛

𝑛!
, see Figure 4.1. We have

RowSum𝑚 = 𝑥𝑚

𝑚!
(1 + 𝑦 + 𝑦2

2!
+ …) = 𝑥𝑚

𝑚!
exp(𝑦),

hence summation by rows gives
∞
∑
𝑚=0

RowSum𝑚 =
∞
∑
𝑚=0

𝑥𝑚

𝑚!
exp(𝑦) = exp(𝑥) exp(𝑦).

We now calculate the 𝑑th diagonal sum (multiplying and dividing by 𝑑! for emphasis):

DiagSum𝑑 = 1
𝑑!
(𝑥𝑑 + 𝑑!

(𝑑 − 1)! 1!
𝑥𝑑−1𝑦1 + 𝑑!

(𝑑 − 2)! 2!
𝑥𝑑−2𝑦2 +⋯+ 𝑦𝑑).

By the Binomial Theorem, the expression in brackets is the expansion of (𝑥+𝑦)𝑑. Thus,
summation by diagonals gives

∞
∑
𝑑=0

DiagSum𝑑 =
∞
∑
𝑑=0

1
𝑑!
(𝑥 + 𝑦)𝑑 = exp(𝑥 + 𝑦).
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We claim that the sum of all numbers in this double series does not depend on the method
of summation, and so exp(𝑥) exp(𝑦) = exp(𝑥 + 𝑦). We need to justify this claim.

If both 𝑥 and 𝑦 are non-negative, then all the numbers 𝑥𝑚

𝑚!
𝑦𝑛

𝑛!
are non-negative. In this

case, Proposition 2.3 guarantees that the sum, ∑𝑚,𝑛
𝑥𝑚

𝑚!
𝑦𝑛

𝑛!
, is independent of the method

of summation, and so exp(𝑥) exp(𝑦) = exp(𝑥 + 𝑦).

Without the assumption that 𝑥, 𝑦 are non-negative, we can show that the sum of all the
absolute values in the table is finite:

∣𝑥
𝑚

𝑚!
𝑦𝑛

𝑛!
∣ = |𝑥|𝑚

𝑚!
|𝑦|𝑛

𝑛!
⇒ ∑

𝑚,𝑛
∣𝑥

𝑚

𝑚!
𝑦𝑛

𝑛!
∣ = exp(|𝑥| + |𝑦|) < +∞,

so by Claim 2.7, the sum ∑𝑚,𝑛
𝑥𝑚

𝑚!
𝑦𝑛

𝑛!
is still independent of the method of summation,

and we still have exp(𝑥) exp(𝑦) = exp(𝑥 + 𝑦).

Discussion of the 𝑒𝑥 notation. The law of the exponential tells us that, for all 𝑛 ∈ ℕ,

exp(𝑛) = exp(1 + 1 + ⋯+ 1⏟⏟⏟⏟⏟⏟⏟
𝑛

) = exp(1) exp(1)… exp(1) = 𝑒𝑛.

It also follows that, for 𝑝, 𝑞 ∈ ℕ, (exp(𝑝𝑞 ))
𝑞
= exp(𝑞𝑝𝑞 ) = exp(𝑝) which is 𝑒𝑝, and so by

definition of the 𝑞th root and the (𝑝/𝑞)th power,

exp(𝑝𝑞 ) =
𝑞
√
𝑒𝑝 = 𝑒

𝑝
𝑞 .

The law of the exponential also tells us that exp(−𝑥) exp(𝑥) = exp(0) = 1, hence

exp(−𝑥) = 1
exp(𝑥)

⇒ exp(−𝑝
𝑞 ) = 1/𝑒

𝑝
𝑞 = 𝑒−

𝑝
𝑞 .

Therefore, exp(𝑥) = 𝑒𝑥 for all rational numbers 𝑥. Motivated by this, we extend the
notation to all real 𝑥:

Notation: 𝑒𝑥.

exp(𝑥) is written as 𝑒𝑥 for all 𝑥 ∈ ℝ.



𝑒𝑥, ln, differentiation 36

Definition of ln, the natural logarithm function

We are going to introduce the inverse function to 𝑒𝑥. Let us show that 𝑒𝑥 is bijective.

Proposition 4.2: properties of 𝑒𝑥.

The function 𝑓(𝑥) = 𝑒𝑥 is a strictly increasing bijection ℝ → (0,+∞).

Proof. Observe that 𝑥 > 0 ⟹ 𝑒𝑥 = 1 + 𝑥 + 𝑥2

2
+ ⋯ > 1 + 𝑥. In particular, 𝑒𝑥 is

positive for positive 𝑥. Then 𝑒−𝑥 = 1/𝑒𝑥 implies that 𝑒𝑥 is positive for all 𝑥, and is indeed
a function from ℝ to (0,+∞).

For all 𝑥, 𝑦 ∈ ℝ we have 𝑒𝑦 − 𝑒𝑥 = 𝑒𝑥(𝑒𝑦−𝑥 − 1). If 𝑥 < 𝑦, then 𝑒𝑦−𝑥 > 1 as observed
above, so 𝑒𝑦 > 𝑒𝑥. We have shown that 𝑒𝑥 is strictly increasing, hence injective.

To show that 𝑒𝑥 is surjective, let 𝑑 ∈ (0,+∞) be arbitrary. If 𝑑 > 1, note that 𝑒𝑑 >
1 + 𝑑 > 𝑑 as shown above. Also 𝑒0 = 1 < 𝑑. The function is continuous, so by the
Intermediate Value Theorem there exists 𝑐 ∈ [0, 𝑑] such that 𝑒𝑐 = 𝑑.

If 𝑑 < 1 then 1
𝑑 > 1 and by the above, 1

𝑑 = 𝑒𝑐 for some 𝑐. We then have 𝑑 = 𝑒−𝑐 by
the law of the exponential. Finally, if 𝑑 = 1 then 𝑑 = 𝑒0. We have proved that 𝑒𝑥 is
surjective, and so it is bijective.

We immediately deduce

Theorem 4.3: natural logarithm ln.

There is a strictly increasing continuous bijection ln ∶ (0,+∞) → ℝ such that ln 𝑒𝑥 =
𝑥 for all 𝑥 ∈ ℝ, 𝑒ln𝑦 = 𝑦 for all 𝑦 > 0 and ln(𝑦𝑧) = ln 𝑦 + ln 𝑧 for all 𝑦, 𝑧 > 0.

Sketch of proof. 𝑒𝑥 is a bijection from ℝ to (0,+∞) so it must have an inverse (0,+∞) →
ℝ, which we denote ln and call the natural logarithm function. Inverse means that
ln 𝑒𝑥 = 𝑥 and 𝑒ln𝑦 = 𝑦.
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Using the Inverse Function Theorem 1.2, we conclude that ln is strictly increasing and
continuous.

By definition of ln, 𝑥 = ln 𝑒𝑥 for all 𝑥. Set 𝑥 = ln 𝑦+ ln 𝑧 to get ln 𝑦+ ln 𝑧 = ln 𝑒(ln𝑦+ln 𝑧).
By the law of the exponential, this equals ln(𝑒ln𝑦𝑒ln 𝑧). Yet 𝑒ln𝑦 = 𝑦 and 𝑒ln 𝑧 = 𝑧, so the
answer simplifies to ln(𝑦𝑧). We proved the logarithm law, ln 𝑦 + ln 𝑧 = ln(𝑦𝑧).

Differentiation of functions: an informal introduction

We begin the second part of the course: the theory of differentiation.

To differentiate a “smooth” function 𝑓 at point 𝑎 ∈ ℝ means to calculate the derivative,
𝑓 ′(𝑎), of 𝑓 at 𝑎. The derivative, if it exists, shows “how fast” the function 𝑓 grows (or
decreases) at the point 𝑎. It is impossible to measure growth by looking just at the value
of 𝑓 at 𝑎. Rather, the derivative is defined via taking the limit; we illustrate this in Fig. 4.2.

𝑎 𝑥

𝑓(𝑎)

𝑓(𝑥)

𝑃

𝑄graph of 𝑓
secant
tangent

Figure 4.2: The secant passing through the points (𝑎, 𝑓(𝑎)) and (𝑥, 𝑓(𝑥)) on the graph is
𝑚 = 𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎 . As 𝑥 → 𝑎, we expect the secant to get closer to the tangent at (𝑎, 𝑓(𝑎)).

We first present the idea informally (rigorous definitions are below). Fix a point 𝑃 =
(𝑎, 𝑓(𝑎)) on the graph of a function 𝑓. The slope, or gradient, of the secant passing
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through 𝑃 and another point 𝑄 = (𝑥, 𝑓(𝑥)) on the graph is

𝑚𝑃𝑄 = 𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

.

As 𝑄 “gets closer” to 𝑃, the secants “seem” to approach a fixed line, the tangent to the
graph at 𝑃. The gradient of the tangent at 𝑃, if it exists, is the derivative of 𝑓 at 𝑎:

𝑚tangent at 𝑃 = 𝑓 ′(𝑎).

Why differentiate functions? It turns out that derivatives appear in powerful results which
allow us to approximate functions by extremely good functions — polynomials — and to
represent some functions as sums of infinite power series. But first, we build up theory to

• differentiate basic functions, such as polynomials, rational functions, exponential,
logarithm, trigonometric and inverse trigonometric functions;

• use rules of differentiation, to find derivatives of new functions constructed from
basic functions.

Definition of the derivative of 𝑓 at 𝑎

We now start our rigorous treatment of differentiation.

Definition: open neighbourhood of the point 𝑎 ∈ ℝ.

An open neighbourhood of 𝑎 is an open interval (𝑎 − 𝛿, 𝑎 + 𝛿) for some 𝛿 > 0.

Definition: differentiable at 𝑎, derivative at 𝑎.

Let 𝐴 ⊆ ℝ, and let 𝑓∶ 𝐴 → ℝ be a function. Suppose that 𝑎 ∈ 𝐴 and 𝐴 contains
an open neighbourhood of the point 𝑎. We say that 𝑓 is differentiable at 𝑎 if

lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

exists. The value of this limit is the derivative of 𝑓 at 𝑎, and is denoted 𝑓 ′(𝑎).

Remark: for 𝑓 to be differentiable at 𝑎, 𝑓 ′(𝑎) must be a real number, not infinity.
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Definition: differentiable on an open interval.

𝑓 is differentiable on an open interval 𝐼 if it is differentiable at every point of 𝐼.

Remark: if 𝑓 is defined on a closed interval [𝑎, 𝑏], we will not try to differentiate 𝑓 at 𝑎 or
at 𝑏. Though possible via one-sided limits, we will not need this.

Notation: 𝑑
𝑑𝑥𝑓(𝑥).

If a function 𝑓(𝑥) is differentiable on an open interval, taking the derivative of 𝑓 at
each point of the interval defines a new function. We will write 𝑓 ′(𝑥), or 𝑑

𝑑𝑥𝑓(𝑥),
to denote the derivative of 𝑓(𝑥) as a function of 𝑥.

There are functions whose derivatives can be computed by definition, i.e., by calculating
the limit given in the definition of 𝑓 ′(𝑎) without using any further theorems.

Example: derivative of a constant function.

Given 𝑐 ∈ ℝ, define a constant function on ℝ by the formula 𝑓(𝑥) = 𝑐 for all 𝑥.
This function has derivative 0 at all points of ℝ.

Justification: by definition, the derivative at 𝑎 is lim𝑥→𝑎
𝑐−𝑐
𝑥−𝑎 = lim𝑥→𝑎 0 = 0.

Remark: Remember that the limit, lim𝑥→𝑎 𝑔(𝑥), of 𝑔(𝑥) as 𝑥 tends to 𝑎, does not require
𝑔(𝑥) to be defined at 𝑎. Indeed, the MFA definition of limit (revisit it!) looks only at
points 𝑥 such that 0 < |𝑥 − 𝑎| < 𝛿, and this excludes the case 𝑥 = 𝑎.

For example, the expression 𝑐−𝑐
𝑥−𝑎 above is undefined when 𝑥 = 𝑎. But it is of no concern to

us: 𝑐−𝑐
𝑥−𝑎 has value 0 for all 𝑥 such that 𝑥 ≠ 𝑎, and so we can write lim𝑥→𝑎

𝑐−𝑐
𝑥−𝑎 = lim𝑥→𝑎 0.

To conclude: when calculating a limit lim𝑥→𝑎, we can always assume 𝑥 ≠ 𝑎.

Example: derivative of the function 𝑥.
𝑑
𝑑𝑥𝑥 = 1 on ℝ.

Justification: by definition, the derivative of 𝑥 at 𝑎 is lim𝑥→𝑎
𝑥−𝑎
𝑥−𝑎 = lim𝑥→𝑎 1 = 1.
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Theorem 4.4: differentiable implies continuous.

If 𝑓 is differentiable at 𝑎, then 𝑓 is continuous at 𝑎.

Proof. The criterion of continuity says that 𝑓 is continuous at 𝑎 iff lim𝑥→𝑎 𝑓(𝑥) = 𝑓(𝑎).
Rearranging, we obtain: 𝑓 is continuous at 𝑎 ⟺ lim𝑥→𝑎(𝑓(𝑥) − 𝑓(𝑎)) = 0.

Assume 𝑓 is differentiable at 𝑎, so that the limit lim𝑥→𝑎
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎 = 𝐿 exists. Then

lim
𝑥→𝑎

(𝑓(𝑥) − 𝑓(𝑎)) = lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

(𝑥 − 𝑎) (can assume 𝑥 ≠ 𝑎)

= lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

lim
𝑥→𝑎

(𝑥 − 𝑎) (by AoL for functions)

= 𝐿 ⋅ 0 = 0.

Thus, 𝑓 verifies the (rearranged) criterion of continuity above, so is continuous at 𝑎.

Alert: continuous at 𝑎 ⟹̸ differentiable at 𝑎.

The converse to Theorem 4.4 does not hold. For example, 𝑓(𝑥) = |𝑥| is continuous
but not differentiable at 0.

𝑥

𝑦

Figure 4.3: Visibly, the graph of 𝑓(𝑥) = |𝑥| is “not smooth” at 𝑥 = 0.

Justification. “Differentiable at 0” requires the limit lim𝑥→0
|𝑥|−|0|
𝑥−0 = lim𝑥→0

|𝑥|
𝑥 to exist.

Yet the function is defined by |𝑥| =
⎧{
⎨{⎩

𝑥 if 𝑥 ≥ 0,

−𝑥 if 𝑥 < 0,
see the graph in Fig. 4.3. Hence

lim
𝑥→0+

|𝑥|
𝑥

= lim
𝑥→0+

𝑥
𝑥
= 1, lim

𝑥→0−

|𝑥|
𝑥

= lim
𝑥→0−

−𝑥
𝑥

= −1.

The one-sided limits are not equal, so the limit lim𝑥→0 does not exist.
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Rules of differentiation: sums and products

We can obtain new differentiable functions from known ones by addition and multiplication.

Theorem 4.5: sum and product rules of differentiation.

Suppose that the functions 𝑓, 𝑔 are differentiable at 𝑎. Then
• the function 𝑓 + 𝑔 is differentiable at 𝑎, and (𝑓 + 𝑔)′(𝑎) = 𝑓 ′(𝑎) + 𝑔′(𝑎);
• the function 𝑓𝑔 is differentiable at 𝑎, and (𝑓𝑔)′(𝑎) = 𝑓 ′(𝑎)𝑔(𝑎) + 𝑓(𝑎)𝑔′(𝑎).

Proof. The sum rule (proof not given in class): by definition of the function 𝑓 + 𝑔,
(𝑓 + 𝑔)(𝑥) − (𝑓 + 𝑔)(𝑎)

𝑥 − 𝑎
is the same as 𝑓(𝑥) + 𝑔(𝑥) − (𝑓(𝑎) + 𝑔(𝑎))

𝑥 − 𝑎
which rearranges as

𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

+ 𝑔(𝑥) − 𝑔(𝑎)
𝑥 − 𝑎

. Taking the limit as 𝑥 → 𝑎 and using AoL for functions, we
obtain (𝑓 + 𝑔)′(𝑎) = 𝑓 ′(𝑎) + 𝑔′(𝑎) as claimed.

The product rule: by definition, (𝑓𝑔)(𝑥) = 𝑓(𝑥)𝑔(𝑥). Start with

𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑎)𝑔(𝑎)
𝑥 − 𝑎

= 𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑎)𝑔(𝑥) + 𝑓(𝑎)𝑔(𝑥) − 𝑓(𝑎)𝑔(𝑎)
𝑥 − 𝑎

where we subtract then add 𝑓(𝑎)𝑔(𝑥) in the numerator. The RHS rearranges as

𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

𝑔(𝑥) + 𝑓(𝑎)𝑔(𝑥) − 𝑔(𝑎)
𝑥 − 𝑎

.

We are given that 𝑔 is differentiable at 𝑎. Differentiable implies continuous, so 𝑔 is
continuous at 𝑎. Hence lim𝑥→𝑎 𝑔(𝑥) = 𝑔(𝑎). Taking lim𝑥→𝑎 in the last displayed formula
and using AoL, we get 𝑓 ′(𝑎)𝑔(𝑎) + 𝑓(𝑎)𝑔′(𝑎), as claimed.

Now, using only + and ×, we can construct all polynomials in 𝑥 from constants and the
function 𝑥. If we apply the rules of differentiation, we obtain

Corollary.

A polynomial in 𝑥 is differentiable for all 𝑥 ∈ ℝ.
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Differentiating infinite sums

The sum rule of differentiation does not extend to infinite sums. A function defined as a
sum of series of differentiable functions may not be differentiable.

Yet one can show that a function defined as a sum of a power series is differentiable on
(−𝑅,𝑅), where 𝑅 is the radius of convergence. We will not go through the proof of this
in class. Interested students are invited to construct a proof as an exercise, along the
following lines (not done in class and not examinable):

Let 𝑓(𝑥) = ∑∞
𝑛=0 𝑐𝑘𝑥

𝑘 where the radius of convergence is 𝑅 > 0. Let 𝑎 ∈ (−𝑅,𝑅).
By Algebra of Infinite Sums, we have 𝑓(𝑥) − 𝑓(𝑎) = 𝐹𝑎(𝑥)(𝑥 − 𝑎) where 𝐹𝑎(𝑥) =
∑∞

𝑛=1 𝑐𝑘(𝑥
𝑘−1 + 𝑎𝑥𝑘−2 + ⋯ + 𝑎𝑘−2𝑥 + 𝑎𝑘−1). By Proposition 4.6 below, 𝑓(𝑥) will be

differentiable at 𝑎 if 𝐹𝑎(𝑥) is shown to be continuous at 𝑎.

We note that 𝐹𝑎(𝑥) is obtained if the double series 𝑎𝑚,𝑛 = 𝑐𝑚+𝑛+1𝑎𝑚𝑥𝑛, 𝑚,𝑛 ≥ 0, is
summed by diagonals. Yet summation by columns gives the same answer (this needs to be
justified by demonstrating that ∑𝑚,𝑛|𝑎𝑚,𝑛| < +∞ when 𝑎, 𝑥 ∈ (−𝑅,𝑅)) and returns
a power series in 𝑥. By Theorem 3.5, the sum of a power series is a continuous function,
so 𝐹𝑎 is continuous on (−𝑅,𝑅), as required.

One concludes from the above that (∑∞
𝑛=0 𝑐𝑛𝑥

𝑛)
′
= ∑∞

𝑛=0(𝑐𝑛𝑥
𝑛)′ = ∑∞

𝑛=1 𝑛𝑐𝑛𝑥
𝑛−1.

So in particular, since (𝑥𝑛

𝑛! )
′ = 𝑛𝑥𝑛−1

𝑛! = 𝑥𝑛−1

(𝑛−1)! , differentiating the exponential series
∑∞

𝑛=0
𝑥𝑛

𝑛! term-by-term gives the same series, so (𝑒𝑥)′ = 𝑒𝑥.

Instructions for the exam: differentiating a power series term-by-term as above without
giving full justification will not be accepted in the exam. If asked to justify differentiation
of 𝑒𝑥, give a result obtained below, Proposition 4.7.

Proving “differentiable” by constructing slope function

Rather than showing directly that lim𝑥→𝑎
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎 exists, we may use the following:
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Proposition 4.6: differentiability means continuity of the slope function at 𝑎.

A function 𝑓(𝑥), defined in an open neighbourhood of 𝑎 ∈ ℝ, is differentiable at 𝑎,
if and only if there is a function 𝐹𝑎(𝑥) such that 𝑓(𝑥)− 𝑓(𝑎) = 𝐹𝑎(𝑥)(𝑥− 𝑎) for all
𝑥, and 𝐹𝑎(𝑥) is continuous at 𝑥 = 𝑎. If these conditions hold, 𝑓 ′(𝑎) equals 𝐹𝑎(𝑎).

Proof. If such 𝐹𝑎 exists and is continuous at 𝑎, we have lim𝑥→𝑎
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎 = lim𝑥→𝑎 𝐹𝑎(𝑥)
which, by continuity, is 𝐹𝑎(𝑎). That is, 𝑓 ′(𝑎) exists and equals 𝐹𝑎(𝑎).

Now suppose that 𝑓 is differentiable at 𝑎. Then, defining

𝐹𝑎(𝑥) =
⎧{
⎨{⎩

𝑓(𝑥)−𝑓(𝑎)
𝑥−𝑎 , 𝑥 ≠ 𝑎,

𝑓 ′(𝑎), 𝑥 = 𝑎.

guarantees lim𝑥→𝑎 𝐹𝑎(𝑥) = 𝐹𝑎(𝑎), so by criterion of continuity 𝐹𝑎 is continuous at 𝑎.

We call 𝐹𝑎 the slope function for 𝑓 at 𝑎, because 𝐹𝑎(𝑥) is the slope (the gradient) of the
secant through the points (𝑎, 𝑓(𝑎)) and (𝑥, 𝑓(𝑥)) on the graph of 𝑓. It is useful to note
the slope function for the polynomial 𝑥𝑛:

𝑓(𝑥) = 𝑥𝑛 ⇒ 𝐹𝑎(𝑥) =
𝑥𝑛 − 𝑎𝑛

𝑥 − 𝑎
= 𝑥𝑛−1 + 𝑥𝑛−2𝑎 + ⋯+ 𝑎𝑛.

This formula defines a polynomial function of 𝑥 which is continuous everywhere, including
at 𝑥 = 𝑎. One has 𝐹𝑎(𝑎) = 𝑛𝑎𝑛−1 which is the derivative of 𝑥𝑛 at 𝑥 = 𝑎.

Differentiating 𝑒𝑥

We use the method of continuous slope function to differentiate 𝑒𝑥.

Proposition 4.7: derivative of 𝑒𝑥.
𝑑
𝑑𝑥𝑒

𝑥 = 𝑒𝑥.
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Proof. To differentiate 𝑒𝑥 at 0, write

𝑒𝑥 − 𝑒0 = 𝑥 + 𝑥2

2!
+ 𝑥3

3!
+ … =

AoIS
𝑥

∞
∑
𝑘=1

𝑥𝑘−1

𝑘!
= (𝑥 − 0)𝐹0(𝑥).

The slope function 𝐹0(𝑥) is the sum of a power series convergent for all 𝑥, hence is
continuous by Theorem 3.5, and by Proposition 4.6 𝑑

𝑑𝑥(𝑒
𝑥)|𝑥=0 exists and equals 𝐹0(0) = 1.

This proves the Special Limit for 𝑒𝑥:

lim
𝑥→0

𝑒𝑥 − 1
𝑥

= 1.

Indeed, the left-hand side is exactly the derivative of 𝑒𝑥 at 𝑥 = 0 which we have just found
to be 1. We now differentiate 𝑒𝑥 at an arbitrary 𝑥 ∈ ℝ:

𝑑
𝑑𝑥

𝑒𝑥 = lim
𝑦→𝑥

𝑒𝑦 − 𝑒𝑥

𝑦 − 𝑥
= lim

𝑦→𝑥
𝑒𝑥 𝑒

𝑦−𝑥 − 1
𝑦 − 𝑥

=
ℎ=𝑦−𝑥

𝑒𝑥 lim
ℎ→0

𝑒ℎ − 1
ℎ

.

By the Special Limit, this is 𝑒𝑥 × 1 = 𝑒𝑥.

The Chain Rule and the Quotient Rule

We will work in the situation
ℝ

𝑔
−→ ℝ

𝑓
−→ ℝ

We will write 𝑔 as a function of 𝑦 ∈ ℝ and 𝑓 a function of 𝑥 ∈ ℝ.

Theorem 4.8: The Chain Rule.

If 𝑔(𝑦) is differentiable at 𝑦 = 𝑘 and 𝑓(𝑥) is differentiable at 𝑥 = 𝑔(𝑘) then (𝑓 ∘𝑔)(𝑦)
is differentiable at 𝑦 = 𝑘, and (𝑓 ∘ 𝑔)′(𝑘) = 𝑓 ′(𝑔(𝑘))𝑔′(𝑘).

Proof. By Proposition 4.6, whenever 𝑓 is differentiable at a point ℓ, one has

𝑓(𝑥) − 𝑓(ℓ) = 𝐹ℓ(𝑥)(𝑥 − ℓ)

for all 𝑥, where the slope function 𝐹ℓ is continuous at ℓ. In particular, this holds for
𝑥 = 𝑔(𝑦) and ℓ = 𝑔(𝑘):

𝑓(𝑔(𝑦)) − 𝑓(𝑔(𝑘)) = 𝐹ℓ(𝑔(𝑦))(𝑔(𝑦) − 𝑔(𝑘)) = 𝐹ℓ(𝑔(𝑦))𝐺𝑘(𝑦)(𝑦 − 𝑘),
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where we assumed that 𝑔 was differentiable at 𝑘 and applied Proposition 4.6 to 𝑔.

The function 𝐹ℓ(𝑔(𝑦)) is continuous at 𝑦 = 𝑘, because 𝑔(𝑦) is continuous (even differen-
tiable!) at 𝑘, 𝐹ℓ is continuous at 𝑔(𝑘) = ℓ, and a composition of continuous functions
is continuous. The function 𝐺𝑘(𝑦) is continuous at 𝑘. Therefore, by Algebra of Contin-
uous Functions, 𝐹ℓ(𝑔(𝑦))𝐺𝑘(𝑦) is a continuous function of 𝑦. It immediately follows by
Proposition 4.6 that the function 𝑓(𝑔(𝑦)) is differentiable at 𝑦 = 𝑘, with

𝐹ℓ(𝑔(𝑘))𝐺𝑘(𝑘) = 𝑓 ′(𝑔(𝑘))𝑔′(𝑘)

as its derivative at 𝑘, as claimed.

Example.

Find 𝑑
𝑑𝑦𝑒

−𝑦2
2 .

Solution. Put 𝑓(𝑥) = 𝑒𝑥 and 𝑔(𝑦) = −1
2𝑦

2 so that our required function is 𝑓(𝑔(𝑦)). To
apply the Chain Rule, we must check that the assumptions of Theorem 4.8 are met:

• 𝑔(𝑦) = −1
2𝑦

2 is a polynomial, hence is differentiable for all 𝑦, with 𝑔′(𝑦) = −𝑦;
• 𝑓(𝑥) = 𝑒𝑥 is differentiable for all 𝑥 by Proposition 4.7, with 𝑓 ′(𝑥) = 𝑒𝑥.

Hence we are allowed to use the Chain Rule: 𝑑
𝑑𝑦𝑒

−𝑦2
2 = 𝑓 ′(𝑔(𝑦))𝑔′(𝑦) = 𝑒−

𝑦2
2 ⋅ (−𝑦) =

−𝑦𝑒−
𝑦2
2 .

Corollary: the Quotient Rule.

If 𝑔(𝑎) ≠ 0 and 𝑓(𝑦), 𝑔(𝑦) are differentiable at 𝑦 = 𝑎, then

(1
𝑔
)
′
(𝑎) = −𝑔′(𝑎)

𝑔(𝑎)2
, (𝑓

𝑔
)
′
(𝑎) = 𝑓 ′(𝑎)𝑔(𝑎) − 𝑓(𝑎)𝑔′(𝑎)

𝑔(𝑎)2
.

Proof. If ℎ(𝑥) = 1
𝑥 then, for any ℓ ≠ 0, ℎ′(ℓ) = lim𝑥→ℓ

1
𝑥−

1
ℓ

𝑥−ℓ = lim𝑥→ℓ
ℓ−𝑥

(𝑥−ℓ)𝑥ℓ . When
calculating lim𝑥→ℓ, we may assume that 𝑥 ≠ ℓ, so this simplifies to lim𝑥→ℓ

−1
𝑥ℓ = − 1

ℓ2 .

Writing 1
𝑔(𝑦) as ℎ(𝑔(𝑦)) and applying the Chain Rule, we have (1𝑔)

′(𝑎) = ℎ′(𝑔(𝑎))𝑔′(𝑎) =
− 1

𝑔(𝑎)2𝑔
′(𝑎) as claimed. Now, to obtain (𝑓𝑔)

′, apply the Product Rule to 𝑓 ⋅ 1
𝑔 .



Week 5

Differentiating ln, 𝑥𝑏, sin and cos

Version 2025/02/26 To accessible online version of this chapter

We start this chapter by differentiating ln(𝑥), the natural logarithm function. Since we
introduced ln as the inverse function of 𝑒𝑥, we will need the following result.

The Inverse Rule of differentiation

Theorem 5.1: The Inverse Rule.

Let 𝑓(𝑥) be strictly monotonic and continuous on [𝑎, 𝑏], and let 𝑔 be the inverse of
𝑓 so that 𝑔 is strictly monotonic and continuous by the Inverse Function Theorem.
Suppose 𝑓 is differentiable at ℓ ∈ (𝑎, 𝑏) and that the derivative 𝑓 ′(ℓ) is not zero.
Then 𝑔 is differentiable at 𝑘 = 𝑓(ℓ), and 𝑔′(𝑘) = 1

𝑓 ′(ℓ)
.

Proof. We begin in the same way as in the proof of the Chain Rule: using Proposition 4.6,
write 𝑓(𝑥) − 𝑓(ℓ) = 𝐹ℓ(𝑥)(𝑥 − ℓ) for all 𝑥 and in particular for 𝑥 = 𝑔(𝑦), so

𝑓(𝑔(𝑦)) − 𝑓(𝑔(𝑘)) = 𝐹ℓ(𝑔(𝑦))(𝑔(𝑦) − 𝑔(𝑘)).

46

https://personalpages.manchester.ac.uk/staff/yuri.bazlov/analysis/notes/ch5.html
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Since 𝑓 and 𝑔 are inverse to each other, 𝑓(𝑔(𝑦)) = 𝑦, so

𝑦 − 𝑘 = 𝐹ℓ(𝑔(𝑦))(𝑔(𝑦) − 𝑔(𝑘)).

When 𝑦 ≠ 𝑘, we have 𝑦 − 𝑘 ≠ 0, and the equation shows that 𝐹ℓ(𝑔(𝑦)) ≠ 0 (because the
left-hand side is not 0). When 𝑦 = 𝑘, we have 𝐹ℓ(𝑔(𝑦)) = 𝐹ℓ(ℓ) = 𝑓 ′(ℓ) which is not 0 by
assumption. Hence 𝐹ℓ(𝑔(𝑦)) is never zero, and we can divide by it:

1
𝐹ℓ(𝑔(𝑦))

(𝑦 − 𝑘) = 𝑔(𝑦) − 𝑔(𝑘).

Since 1
𝐹ℓ(𝑔(𝑦))

is continuous at 𝑦 = 𝑘 by Algebra of Continuous Functions and continuity
of composition, by Proposition 4.6 𝑔(𝑦) is differentiable at 𝑘 with

1
𝐹ℓ(𝑔(𝑘))

= 1
𝐹ℓ(ℓ)

= 1
𝑓 ′(ℓ)

as derivative.

We immediately deduce

Corollary 5.2: inverse of a function differentiable on an interval.

If 𝑓 is strictly monotone and differentiable on an open interval, its inverse function
𝑓−1 is differentiable everywhere it is defined except the points 𝑓(ℓ) with 𝑓 ′(ℓ) = 0,
and

𝑑(𝑓−1)
𝑑𝑦

(𝑦) = 1
𝑑𝑓
𝑑𝑥

(𝑓−1(𝑦))
.

Can the derivative of a strictly increasing function be zero at some points? Yes:

Example: a point where the inverse to a monotone function is not differentiable.

Construct a continuous strictly increasing function 𝑓(𝑥) such that 𝑓 ′(ℓ) = 0 for
some point ℓ. Check that 𝑓−1 is not differentiable at 𝑓(ℓ) in your example.

Solution: for example, 𝑓(𝑥) = 𝑥3 and ℓ = 0. We have 𝑓 ′(0) = 0. For the inverse function
3
√𝑦, the limit lim

𝑦→0

3
√
𝑦 − 3

√
0

𝑦 − 0
= lim

𝑦→0

1
( 3
√𝑦)2

is ∞. This suggests “infinite derivative” at 0,
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−1 1

−1

1

𝑥

𝑦
𝑓(𝑥) = 𝑥3

𝑔(𝑥) = 3
√
𝑥

Figure 5.1: 𝑥3 has zero derivative at 0, the inverse function is not differentiable at 0

yet formally means that 3
√𝑦 is not differentiable at 0. Figure 5.1 shows horizontal tangent

to the graph of 𝑥3, and vertical tangent for 3
√
𝑥, at (0, 0).

Corollary: derivative of ln.
𝑑
𝑑𝑦

ln(𝑦) = 1
𝑦
for all 𝑦 ∈ (0,+∞).

Indeed, ln is the inverse function to exp, so, using the Inverse Rule and the Theorem which
says that exp′ = exp, we calculate

ln′(𝑦) = 1
exp′(ln(𝑦))

= 1
exp(ln(𝑦))

= 1
𝑦
.

Functions 𝑥𝑏 and 𝑎𝑥

Definition: 𝑎𝑏.

For positive real 𝑎 and real 𝑏 we define

𝑎𝑏 = 𝑒𝑏 ln𝑎.
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Remark: this satisfies the exponent laws 𝑎𝑏+𝑐 = 𝑎𝑏𝑎𝑐, (𝑎𝑐)𝑏 = 𝑎𝑏𝑐𝑏, 𝑎0 = 1 and 𝑎−𝑏 =
1/𝑎𝑏 (exercise: deduce these from the properties of the functions ln and exp). In particular,
𝑎𝑛 defined as 𝑎 ⋅ 𝑎 ⋅ … ⋅ 𝑎 (𝑛 factors) coincides with 𝑒𝑛 ln𝑎.

Example: derivative of 𝑥𝑏.

Fix 𝑏 ∈ ℝ. The function 𝑥𝑏 is defined for positive 𝑥. Show that

𝑑
𝑑𝑥

(𝑥𝑏) = 𝑏𝑥𝑏−1.

Solution. Indeed, by Chain Rule 𝑑
𝑑𝑥(𝑥

𝑏) = 𝑑
𝑑𝑥(exp(𝑏 ln(𝑥)) = exp′(𝑏 ln(𝑥)) ⋅ 𝑏 ln′(𝑥).

Using the derivatives of exp(𝑥) and of ln(𝑥) obtained earlier, this is exp(𝑏 ln(𝑥)) ⋅ 𝑏𝑥−1 =
𝑥𝑏 ⋅ 𝑏𝑥−1 = 𝑏𝑥𝑏−1 where we use the exponent laws.

Exercise. Let 𝑎 > 0. Use the Chain Rule to show that 𝑑
𝑑𝑥(𝑎

𝑥) = 𝑎𝑥 ln 𝑎.

The limit definition of 𝑒𝑥 (optional material)

The section “The limit definition of 𝑒𝑥” was not covered in class and is not examinable.

Although in this course we define 𝑒𝑥 as the sum ∑𝑘≥0 𝑥
𝑘/𝑘!, originally it was defined via

the following limit.

Proposition 5.3: the limit definition for 𝑒𝑥 (not examinable).

For all 𝑥 ∈ ℝ, 𝑒𝑥 = lim𝑛→∞(1 + 𝑥
𝑛)

𝑛. In particular, 𝑒 = lim𝑛→∞(1 + 1
𝑛)

𝑛.

Proof. The function ln(1+𝑦) is differentiable (by Chain Rule), and its derivative at 𝑦 = 0
is 1

1+0 = 1. By Proposition 4.6 we can write ln(1 + 𝑦) = 𝐹0(𝑦)𝑦 where the slope function
𝐹0 is continuous at 0 with 𝐹0(0) = 1. Then for a fixed 𝑥 ∈ ℝ,

(1 + 𝑥
𝑛
)
𝑛
= 𝑒𝑛 ln(1+ 𝑥

𝑛 ) = 𝑒𝑛𝐹0( 𝑥𝑛 ) 𝑥𝑛 = 𝑒𝐹0( 𝑥𝑛 )𝑥.
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The sequence 𝑦𝑛 = 𝑥
𝑛 is monotone with limit 0 so Lemma 1.1 and its Corollary tell us that

lim𝑛→∞ 𝑒𝐹0(𝑦𝑛)𝑥 is lim𝑦→0 𝑒𝐹0(𝑦)𝑥. Since 𝑒𝐹0(𝑦)𝑥 is a continuous function of 𝑦, by criterion
of continuity its limit as 𝑦 → 0 equals its value at 0, which is 𝑒𝐹0(0)𝑥 = 𝑒1⋅𝑥 = 𝑒𝑥.

End of the non-examinable section.

The functions sin and cos

In this course, sin𝛼 and cos𝛼 are defined as the ratio of sides in a right-angled triangle.
Thus, if 𝑃𝛼 is the point on the unit circle centred at the origin 𝑂 such that the angle
between the 𝑥 axis and 𝑂𝑃𝛼 is 𝛼, then 𝑃𝛼 has coordinates (cos𝛼, sin𝛼). This defines the
sine and cosine of all 𝛼 ∈ ℝ, see Fig. 5.2. Note that 𝛼 is in radians: the angle equal to
the full revolution (full circle) is 2𝜋. The definition implies that for all 𝛼 ∈ ℝ,

cos(−𝛼) = cos𝛼, sin(−𝛼) = − sin𝛼, cos𝛼 = sin(𝜋
2
− 𝛼).

We also define tan𝛼 = sin𝛼
cos𝛼

whenever cos𝛼 ≠ 0. When 𝛼 ∈ (−𝜋
2 ,

𝜋
2 ), the straight line

𝑂𝑃𝛼 intersects the tangent to the circle at 𝑃0 at the point 𝑇𝛼(1, tan𝛼), see Fig. 5.2.

𝛼 𝑥

𝑦

sin𝛼

cos𝛼

tan𝛼

1

−1 𝑂 𝑃0

𝑃𝛼
𝑇𝛼

Figure 5.2: definition of sin𝛼, cos𝛼 and tan𝛼
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Lemma 5.4: the sine-angle-tangent inequality.

0 ≤ sin𝛼 ≤ 𝛼 ≤ tan𝛼 for all 𝛼 ∈ (0, 𝜋2 ).

Proof. In Fig. 5.2, area(△𝑂𝑃0𝑃𝛼) = 1
2 × base × height = 1

2 × 1 × sin𝛼 = 1
2 sin𝛼.

The area of the sector 𝑂𝑃0𝑃𝛼 with central angle 𝛼 is 𝛼
2𝜋 × area(circle) = 𝛼

2𝜋 × 𝜋 = 1
2𝛼.

Area(△𝑂𝑃0𝑇𝛼) is 1
2×1×tan𝛼. We have △𝑂𝑃0𝑃𝛼 ⊆ sector 𝑂𝑃0𝑃𝛼 ⊆△𝑂𝑃0𝑇𝛼, therefore

1
2 sin𝛼 ≤ 1

2𝛼 ≤ 1
2 tan𝛼.

Remark. Graphs in Fig. 5.3 illustrate the behaviour of sin𝑥, 𝑥 and tan𝑥 for small 𝑥.

−3𝜋
4

−𝜋
2 −𝜋

4
𝜋
4

𝜋
2

3𝜋
4

−1

1

𝑥

tan𝑥
𝑥

sin𝑥

Figure 5.3: graphs of sin𝑥, 𝑥 and tan𝑥 for small 𝑥

Corollary 5.5: limit of sine at 0.

lim𝑥→0 | sin𝑥| = 0.

Proof. The inequality in Lemma 5.4 can be written as 0 ≤ | sin𝑥| ≤ 𝑥 when 𝑥 ∈ (0, 𝜋2 ), as
sin𝑥 is positive for these 𝑥. Since lim𝑥→0+ 0 = lim𝑥→0+ 𝑥 = 0, we have lim𝑥→0+ | sin𝑥| =
0 by Sandwich Rule.
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Putting 𝑡 = −𝑥, we have lim𝑥→0− | sin𝑥| = lim𝑡→0+ | sin(−𝑡)| = lim𝑡→0+ | sin 𝑡| = 0.

The one-sided limits exist and are equal, so lim𝑥→0 | sin𝑥| is their common value 0.

We need another result about sin and cos with a geometric proof.

Lemma 5.6: sine and cosine subtraction formulas.

i. sin 𝑦 − sin𝑥 = 2 sin(𝑦−𝑥
2 ) cos(𝑦+𝑥

2 );
ii. cos 𝑦 − cos𝑥 = −2 sin(𝑦−𝑥

2 ) sin(𝑦+𝑥
2 ).

𝑂

𝑃𝛽

𝑃𝛼 𝑃(𝛼+𝛽)/2
𝑀

𝛼−𝛽
2

Figure 5.4: proof of the sine addition formula for sin𝛼 + sin𝛽

Proof of Lemma 5.6 — proof not examinable. If 𝑀 is the midpoint of the segment 𝑃𝛼𝑃𝛽,
the vector ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝑀 is 1

2( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑂𝑃𝛼 + ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑂𝑃𝛽) and so the 𝑦-coordinate of 𝑀 is 1
2(sin𝛼 + sin𝛽). On

the other hand, see Fig. 5.4, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝑀 is proportional to ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑂𝑃(𝛼+𝛽)/2 and, from the right-angled
triangle △𝑂𝑀𝑃𝛽 we can see that ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝑀 = cos(𝛼−𝛽

2 ) ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑂𝑃(𝛼+𝛽)/2. This expresses the 𝑦-
coordinate of 𝑀 via the 𝑦-coordinate of 𝑃(𝛼+𝛽)/2:

1
2
(sin𝛼 + sin𝛽) = cos(𝛼−𝛽

2 ) sin(𝛼+𝛽
2 ).
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This sine addition formula holds for all 𝛼, 𝛽 ∈ ℝ. Substitute 𝛼 = 𝑦, 𝛽 = −𝑥 to obtain
the sine subtraction formula i. as claimed.

Substitute 𝛼 = 𝜋
2 − 𝑦, 𝛽 = 𝑥 − 𝜋

2 : the LHS becomes 1
2(sin(

𝜋
2 − 𝑦) − sin(𝜋2 − 𝑥)) which

is 1
2(cos 𝑦 − cos𝑥), the RHS becomes cos(𝜋2 − 𝑦+𝑥

2 ) sin(−𝑦+𝑥
2 ) = − sin(𝑦+𝑥

2 ) sin(𝑦−𝑥
2 ),

equivalent to the cosine subtraction formula ii.

Proposition 5.7: continuity of sin and cos.

sin𝑥 and cos𝑥 are continuous functions on ℝ.

Proof. In the sine subtraction formula (Lemma 5.6), we bound the modulus of cos by 1:

| sin 𝑦 − sin𝑥| = 2 ∣sin 𝑦−𝑥
2 ∣ ∣cos 𝑦+𝑥

2 ∣ ≤ 2| sinℎ|,

where we put ℎ = (𝑦 − 𝑥)/2. Opening out the modulus, we get

−2| sinℎ| ≤ sin 𝑦 − sin𝑥 ≤ 2| sinℎ|.

Taking the limit as 𝑦 → 𝑥, equivalently ℎ → 0, we have limℎ→0 2| sinℎ| = 0 by Corol-
lary 5.5. Hence by Sandwich Rule

lim
𝑦→𝑥

sin(𝑦) − sin(𝑥) = 0 ⇔ lim
𝑦→𝑥

sin(𝑦) = sin(𝑥),

so by the criterion of continuity, sin is continuous at 𝑥.

Continuity of cos is proved similarly and is left to the student.

Comparing the graphs of sin𝑥 and 𝑥 in Fig. 5.3, we suspect that these two functions have
the same gradient at 0. Let us formalise this.

Proposition 5.8: special limit for sine.

lim𝑥→0
sin𝑥
𝑥

= 1.
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Proof. We compute the one-sided limits. If 𝑥 ∈ (0, 𝜋2 ), we have

cos𝑥 = sin𝑥
tan𝑥

≤ sin𝑥
𝑥

≤ sin𝑥
sin𝑥

= 1

from the sine-angle-tangent inequality in Lemma 5.4. As 𝑥 → 0+, cos𝑥 → cos 0 = 1
because cos is a continuous function. Hence by Sandwich Rule lim𝑥→0+

sin𝑥
𝑥 = 1.

In lim𝑥→0−
sin𝑥
𝑥 , change the variable, 𝑥 = −𝑦. The limit becomes lim𝑦→0+

sin(−𝑦)
−𝑦 =

lim𝑦→0+
sin𝑦
𝑦 = 1.

Both one-sided limits are equal to 1, so lim𝑥→0
sin𝑥
𝑥 exists and equals 1, as claimed.

Theorem 5.9: differentiation of sin and cos.

Functions sin𝑥 and cos𝑥 are differentiable everywhere on ℝ, and

sin′ 𝑥 = cos𝑥, cos′ 𝑥 = − sin𝑥.

Proof. Use the sine subtraction formula to write sin 𝑦 − sin𝑥 = 2 sinℎ cos(𝑥 + ℎ) with
ℎ = (𝑦 − 𝑥)/2. Then

sin 𝑦 − sin𝑥
𝑦 − 𝑥

= 2 sinℎ cos(𝑥 + ℎ)
2ℎ

= sinℎ
ℎ

cos(𝑥 + ℎ),

and so
sin′ 𝑥 = lim

ℎ→0

sinℎ
ℎ

× lim
ℎ→0

cos(𝑥 + ℎ) = 1 × cos(𝑥 + 0) = cos𝑥

by AoL, the Special Limit for sine and continuity of cos.

To differentiate cos, use cos 𝑦 − cos𝑥 = −2 sinℎ sin(𝑥 + ℎ) and conclude similarly.
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