§ 6 Bifurcation of maps

§ 6.1 Fixed points, periodic orbits, and their stability.

\[x_{n+1} = f(x_n) \]

fixed points: \[x^* = f(x^*) \]

linear stability:

\[x_{n+1} - x^* = f(x_n) - f(x^*) \]

\[\approx f'(x^*)(x_n - x^*) \]

if \(x_0 \) is close to \(x^* \),

\[x_{n+1} \text{ is close to } x^* \] (or \(x_n \to x^* \)),

if \(|f'(x^*)| < 1 \).

periodic orbits of order \(p \)

\((x_0, x_1, \ldots, x_{p-1}) \) such that

\[x_{n+p} = f(f \cdots (f(x_n))) = f^p(x_n) \]

The stability of this orbit is equivalent to the stability of any \(x_0, 0 \leq k \leq p-1 \), for the map

\[z_{n+1} = F(z_n), \quad F(z) = f^p(z) \]

Some facts:

1. \(x_0, 0 \leq k \leq p-1 \), is a fixed point of \(z_{n+1} = F(z_n) = f^p(z_n) \), or

\[x_0 = f^p(x_0) \]

2. \(\frac{d}{dx} F(z) \bigg|_{x_0} = \frac{d}{dx} F(z) \bigg|_{x_1} = \cdots = \frac{d}{dx} F(z) \bigg|_{x_{p-1}} \]

\[= f'(x_0) f'(x_1) \cdots f'(x_{p-1}) \]

For example, if \((x_0, x_1)\) is a periodic orbit of order two, then
\[x_1 = f(x_0), \quad x_0 = f(x_1) \]

then \[x_1 = f(x_0) = f(f(x_1)) \] and \[x_0 = f(x_1) = f(f(x_0)) \]

\[
\frac{d}{dx} f(f(x)) \bigg|_{x_0} = f'(f(x_1)) f'(x_1) \bigg|_{x_0} = f'(f(x_0)) f'(x_0) = f'(x_1) f'(x_0),
\]

Similarly, \[\frac{d}{dx} f(f(x)) \bigg|_{x_1} = f'(x_1) f'(x_0) \].

Hence, a periodic orbit \(x_0, x_1, \ldots, x_{p+1} \) is linearly stable if

\[
\left| \frac{1}{f'(x_0) f'(x_1) \cdots f'(x_{p+1})} \right| < 1
\]

Invariant Set: S is an invariant set for the map \(x_{n+1} = f(x_n) \), if \(x_0 \in S \), then \(x_n \in S \) for all \(n \geq 0 \).

In practice, we only need to show that if \(x_0 \in S \), then \(x_{n+1} \in S \), for \(S \) to be invariant.

Cobweb diagram (graphic representation of maps)

\[x_{n+1} = f(x_n) \]

\[y = x \]

\[y = f(x) \]
\[f'(x^*) < 0 \]

\[x_{n+1} - x^* \approx f'(x^*) (x_n - x^*) \]

In higher dimensional maps, we look at \(\lambda_i(\text{D}f(x^*)) \).

- **Linearly stable:** if \(|\lambda_i(\text{D}f(x^*))| < 1 \) for all \(i \).
- **Linearly unstable:** if \(|\lambda_i(\text{D}f(x^*))| > 1 \) for some \(i \).

§ 6.2. Bifurcation of maps

\[x_{n+1} = f_\mu(x_n) \]

Criteria:

\[|\lambda_i(\text{D}f(x^*))| = 1 \]

Saddle-node bifurcation:

\[x_{n+1} = x_n + \mu - x_n^2 = f_\mu(x_n) \]

- If \(\mu < 0 \), no fixed points.
- If \(\mu > 0 \), two fixed points \(x^\pm = \pm \sqrt{\mu} \).

One stable and one unstable, because

\[f_\mu'(x^\pm) = 1 - 2x^\pm = 1 \mp 2\sqrt{\mu} \]

\(x^+_\mu = \sqrt{\mu} \) is stable and \(x^-_\mu = -\sqrt{\mu} \) is unstable.

\(x^* = \sqrt{\mu} \)
Transcritical Bifurcation:

\[x_{n+1} = \mu (x_n) = x_n (1+\mu) x_n - x_n^2 = f_\mu(x_n) \]

Always two fixed points, \(x^* = 0 \) and \(x^* = \mu \).

\[f_\mu'(x) = 1 + \mu - 2x \]

\[f_\mu'(0) = 1 + \mu, \quad f_\mu'(\mu) = -1 + \mu \]

\(x^* = 0 \) is stable if \(\mu < 0 \) and unstable if \(\mu > 0 \) and \(x^* = \mu \) is stable if \(\mu > 0 \) and unstable if \(\mu < 0 \).

Pitchfork Bifurcation

\[x_{n+1} = (1+\mu) x_n - x_n^3 = f_\mu(x_n) \]

\(\mu < 0 \), one fixed point \(x^* = 0 \).

\(\mu > 0 \), three fixed points: \(x^* = 0, \pm \sqrt{\mu} \).

\[f_\mu'(x^0) = 1 + \mu - 3x^2 \]

\(x^* = 0 \) is stable for \(\mu < 0 \), and unstable for \(\mu > 0 \).

\(x^* = \pm \sqrt{\mu} \) stable for \(\mu > 0 \), unstable for \(\mu < 0 \) and unstable for \(\mu > 0 \).