Exercise Sheet 10: Bifurcation of maps

1. Although the bifurcation diagrams of the continuous system

\[\dot{x} = \mu x - x^2 \]

and the discrete map

\[x_{n+1} = (1 + \mu)x_n - x_n^2 \]

look the same, the latter is more complicated at least in the following two ways:
(a) The solution \(x(t) \) for the continuous system usually converges to the fixed points for a large class of initial condition \(x(0) = x_0 \), but \(x_n \) for the discrete system may not (and usually converges for a limited range of initial condition). For instance, consider the case \(\mu = 1 \) and \(x_0 > 0 \), show that the solution \(x(t) \) to \(\dot{x} = \mu x - x^2 = x - x^2 \) converges to the stable fixed point \(x^* = 1 \). For the discrete system \(x_{n+1} = 2x_n - x_n^2 \), find the solution \(x_n \), by using the equivalent recursive relation \(x_{n+1} - 1 = -(x_n - 1)^2 \), and hence find for which \(x_0 > 0 \), the solution \(x_n \) does not converge to \(x^* = 1 \).

(b) The fixed point \(x^* = \mu \) (for \(\mu > 0 \)) is stable for the continuous system, but may lose its stability for the discrete system when \(\mu \) is large. Find the critical value \(\mu^* \), such that the fixed point \(x^* = \mu \) becomes unstable for \(x_{n+1} = (1 + \mu)x_n - x_n^2 \). What kind of bifurcation occurs at \(\mu = \mu^* \)?

2. For what values of \(\mu \), \([-2,0]\) is an invariant interval for \(x_{n+1} = \mu - x_n^2 \)? In other words, for which values of \(\mu \), if \(x_n \in [-2,0] \), then \(x_{n+1} \in [-2,0] \).

3. Consider the map

\[x_{n+1} = G(x_n, \mu) = (1 + \mu)x_n + 4x_n^2 - 4x_n^3. \]

with \(x_n \in \mathbb{R} \) and \(\mu \in \mathbb{R} \).
(a) Find the fixed points of the map.
(b) If \(x^* \) is a fixed point of a map \(f : \mathbb{R} \rightarrow \mathbb{R} \), state the condition(s) that would lead you to expect that a bifurcation occurs at \(x^* \).
(c) Find the bifurcation points of the fixed points of the map \(G \) defined above.
(d) Sketch the bifurcation diagram for the fixed points of \(G \), showing the stability of the fixed points and the nature of the bifurcations.
4. (This question is taken the final exam for Year 2016-2017) Consider the cubic map \(x_{n+1} = f_\mu(x_n) = \mu x_n(1 - x_n^2) \) with the non-negative real parameter \(\mu \). Its bifurcation diagram is shown below.

(a) For which values of \(\mu \geq 0 \), the interval \([-1, 1]\) is invariant under this map?

(b) Find all fixed points of this cubic map.

(c) Find \(\mu_1 \) (the first dashed line in the figure) where the first bifurcation occurs.

(d) Find \(\mu_2 \) (the second dashed line in the figure) where the second bifurcation occurs.

(e) If the above cubic map is changed to \(x_{n+1} = g_\mu(x_n, x_{n-1}) = \mu x_n(1 - x_{n-1}^2) \) for \(\mu \geq 0 \), then the first bifurcation still occurs at \(\mu_1 \), but the second one is different from \(\mu_2 \). Find the second bifurcation point for this new map.

![Bifurcation Diagram](image.png)

Figure 1. The bifurcation diagram for the cubic map \(x_{n+1} = \mu x_n(1 - x_n^2) \) in Question 4.