
Review for the second Midterm

October 30, 2015

The second midterm is focused on constrained optimization and related topics. No least
square, but you are definitely going to see it in the final. Most of the examples are worked during
the lectures, and the details of some problems are not given here.

Contents

1 Basic Definitions

Standard form: The standard form for constrained optimization is

minimize
x∈Rn

f(x)

subject to
ci(x) = 0, i ∈ E ,
ci(x)≥0, i ∈ I.

(1)

The reason for introducing the standard form is that the necessary or sufficient conditions for
optimality can be different by a sign.

Example 1.1. Convert the following optimization into an equivalent standard form.

max x1 + x2

subject to

x2
1 + x2

2 − 2 ≤ 0

(Hint: there are two places to change: max → min for the objective function and ≤→≥ for the
constraint.)

Active set A(x) at x: The active set A(x) at any feasible point x

A(x) = E
⋃
{i ∈ I | ci(x) = 0}.

Example 1.2. Let the feasible set Ω defined by

Ω = {(x1, x2, x3) | c1(x) = x1 + x2 + x3 = 1,

c2(x) = x2
1 + x2

2 + x2
3 ≤ 1,

c3(x) = x3 ≥ 0.}
Find E , I and the active set A(x) for the points

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1/2, 1/2, 0).
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For the optimization problem (1), if we know the active set A at the minimizer x∗, we can solve
the equivalent problem

minimize
x∈Rn

f(x)

subject to
ci(x) = 0, i ∈ A.

(2)

This usually simplifies the problem a lot (that’s why we start with equality constraints first), and
we can take the inactive constraints just as if they are not there . The real difficult is we don’t know
the active set at the minimizer unless we solve it.

Lagrange Multiplier: Equality constrained optimization problems are usually solved using La-
grange multipliers. Even for inequality constrained problems, we can solve it in a similar way by
assuming different active sets.

Example 1.3 (AM-GM inequality). Let x1, x2, . . . , xn be n non-negative numbers, show that

(x1x2 . . . xn)1/n ≤ x1 + x2 + · · ·+ xn
n

.

This can be formulated as the optimization problem

min
x1 + x2 + · · ·+ xn

n
subject to x1x2 . . . xn = Gn

or equivalently
max x1x2 . . . xn

subject to
x1 + x2 + · · ·+ xn

n
= A.

Example 1.4 (Maximum entropy). Assume a physical system has n states i = 1, 2, . . . , n with
energy εi in i-th states. Let pi be the probability in i-th state, find the maximum of the probability
Let pi be the probability in i-th state with total energy E, find the probabilities pi such that
maximize the entropy S = −∑i pi log pi.

Solution: This problem can be formulated as

max
pi

S = −
∑
i

pi log pi

subject to
n∑
i=1

pi = 1

n∑
i=1

εipi = E

The Lagrange function is

L(p, λ, µ) = −
n∑
i=1

pi log pi − λ
(

n∑
i=1

pi − 1

)
− µ

(
n∑
i=1

εipi − E
)
.

The minimizer p∗ satisfies
∂L

∂pi
= −1− log pi − λ− µεi = 0
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Therefore, pi can be represented as
pi = e−1−λ−µεi .

Substituting it into the two constraints,

1 =
n∑
i=1

pi = e−1−λ
n∑
i=1

e−µεi , E =
n∑
i=1

εipi = e−1−λ
n∑
i=1

εie
−µε.

In general, we can not solve λ and µ from above two equations. However, we can get one standard
alone equation for µ by considering the ratio of these two equations, i.e.,

E =

∑n
i=1 εie

−µεi∑n
i=1 e

−µεi
.

Then µ can be obtained from other ways. In physics, µ = 1/kT where k is the Boltzmann constant
and T is the absolute temperature.

Significance of Lagrange Multipliers: The Lagrange Multipliers measure how the optimal
value depends on the constant on the constraint. This also intimately related to the necessary
conditions with inequality constraints: the corresponding Lagrange multiplier can only have one
sign for a point to be minimizer or maximizer.

Example 1.5. Consider the problem

(P0)
min f(x) =

1

2
x2

1 +
1

2
x2

subject to x1 + x2 = 2.

The Lagrange function is

L(x, λ) =
1

2
x2

1 +
1

2
x2

2 − λ(x1 + x2 − 2)

and the minimizer satisfies

∇xL(x, λ) =

(
x1 − λ
x2 − λ

)
= 0

or x∗1 = x∗2 = λ∗ = 1. The minimal value if f(x∗) = 1.
Now consider the perturbed problem

(Pδ)
min f(x) =

1

2
x2

1 +
1

2
x2

subject to x1 + x2 = 2 + δ.

We want to know how the optimal value f(x∗δ) depends on δ (|δ| � 1). We can find that x∗δ =
(1 + δ/2, 1 + δ/2) and

f(x∗δ) = (1 + δ/2)2 = 1 + δ + δ2/4 = f(x∗) + λ∗δ +O(δ2).

This relation can also be expressed as

d

dδ
f(x∗δ)

∣∣∣∣
δ=0

= λ∗ = 1.

The last relation holds for optimization with more constraints, and the Lagrange multipliers tell
how sensitively the optimal value depends on the corresponding constraint. For inactive constraint,
the corresponding Lagrange multiplier is zero. We can change that constraint a little, without
leading to any change in the optimizer and optimal value (that’s another reason we call it inactive).
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General solution of linear equations: Let A be a n × n matrix, then the solution of the
equation Ax = b for b ∈ Rn depends the properties of A. If A is non-singular (det(A) 6= 0 or A has
full rank), then there is a unique solution, given by x = A−1b. Otherwise, there may be no solution
or there are infinity many solutions of the form x = x̄+ Zv, with Ax̄ = b and AZ = 0.

If A is a m× n matrix with (m < n), similarly for the under-determined equation Ax = b there
is no solution or infinity many solutions of the form x = x̄+ Zv, with Ax̄ = b and AZ = 0.

Example 1.6. Find the general solution of the equation

x1 + x2 + x3 = 1.

The general solution is x̄ = (1, 0, 0). The columns of Z are in the null space of the constraint, or all
the points x = (x1, x2, x3) such that x1 + x2 + x3 = 0.

There is one equation but three unknowns, implying Z has two columns (the general solution has
two degree of freedom). One way is that we can write the solution in term of those free variables, and
then change them into those free variables. More precisely, taking x2 and x3 as the free variables,x1

x2

x3

 =

−x2 − x3

x2

x3

 = x2

−1
1
0

+ x3

−1
0
1

 .

The columns of Z are exactly the vectors on the right hand side.

Z =

−1 −1
1 0
0 1

 , v =

(
v1

v2

)
.

Example 1.7. Find the general solution of the equation{
x1 + x2 + x3 = 1

x1 + x2 + 2x3 = 2.

The particular solution x̄ can be found by inspection or by assuming some of the variables to be zero.
For this example, you CAN NOT assume x̄3 to be zero, otherwise there is no solution. Assuming
x̄2 = 0, we can get the unique solution x̄ = (0, 0, 1). There are three variables and two equations
with independent rows, implying that there is one degree of freedom for the solution of the null
space {

x1 + x2 + x3 = 0

x1 + x2 + 2x3 = 0.
(3)

For the same reason, we can not take x3 to be the free parameter. Taking x2 be the free parameter,
we need to solve x1 and x3 from the system{

x1 + x3 = −x2

x1 + 2x3 = −x2.

The solution is given by x1 = −x2 and x3 = 0. Therefore the solution for the homogeneous
equation (3) is given by x1

x2

x3

=

−x2

x2

0

 = x2

−1
1
0

 .

Therefore Z = (−1, 1, 0)t.
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Example 1.8. Find the general solution of the following linear system of equations

x1 + x2 + x3 = 1,

x2 − 2x3 = −1,

x1 + 3x3 = 2.

2 Optimality conditions

2.1 Linear Equality constraints:

min
x∈Rn

f(x)

subject to Ax = b,

where A ∈ Rm×n, b ∈ Rm.
There are two basic ways to solve it:

Lagrange multiplier: Introducing the Lagrange function

L(x, λ) = f(x)− λt(Ax− b), λ ∈ Rm.

The minimizer x∗ satisfies the equation ∇xL(x∗, λ∗) = ∇f(x∗) − Atλ∗. This condition together
with the constraint Ax∗ = b, gives m+ n equations for m+ n unknowns, x∗ and λ∗.

Reduction of variables: Write the general solution x = x̄ + Zv and define φ(v) = f(x̄ + Zv).
Then the original problem is equivalent to the unconstrained problem:

min
v∈Rr

φ(v)

or
0 = ϕ(v∗) = Zt∇f(x̄+ Zv∗).

Remember that if the rows in A are linear dependent, there may be no solution (inconsistent) or
the size of v is larger than n−m, see Example 1.8.

Example 2.1. Show that for φ(v) = f(z̄ + Zv), we have the gradient and Hessian matrix of φ in
terms of that of f .

∇φ(v) = Zt∇f(x̄+ Zv), ∇2φ(v) = Zt∇2f(x̄+ Zv)Z.

Example 2.2. Show that when A has full row rank, the two first order optimality conditions
Zt∇f(x∗) = 0 and ∇f(x∗) = Atλ∗ are equivalent.

If ∇f(x∗) = Atλ∗, then

Zt∇f(x∗) = ZtAtλ∗ = (AZ)tλ∗ = 0

since columns of Z are in the null space of A.
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If Zt∇f(x∗) = 0, but ∇f(x∗) 6= Atλ for any λ ∈ Rm. Let λ∗ be the solution of the least square
problem

min
λ∈Rm

‖∇f(x∗)−Atλ‖2

and define r = ∇f(x∗)−Atλ∗ 6= 0. Since λ∗ satisfies the normal equation

A(∇f(x∗)−Atλ∗) = 0

or Ar = 0. This implies that r in the column space of Z and we should have rt∇f(X∗) = 0 ( since
Zt∇f(x∗) = 0). On the other hand, from rtAtλ∗ = (Ar)tλ∗ = 0

rt∇f(x∗) = rt(∇f(x∗)−Atλ∗) = ‖r‖22 > 0

contradicting the previous statement. (This also tells you how to find a direction in the feasible
region to decrease the function value, if the optimality condition is violated).

Theorem 2.1 (Necessary Conditions). If x∗ is a local minimizer, then

Zt∇f(x∗) = 0 and Zt∇2f(x∗)Z is positive semidefinite.

Theorem 2.2 (Sufficient Conditions). If x∗ satisfies Ax∗ = b, Zt∇f(x∗) = 0 and Zt∇2f(x∗)Z is
positive definite, then x∗ is a strict local minimizer.

These conditions can be written as for all p ∈ N (A)

pt∇f(x∗) = 0, pt∇2f(x∗)p ≥ 0.

If the constraints are redundant, you have to do some preprocessing, to make sure the rows in
the constraints are linear independent. See the following example.

Example 2.3. Find the minimizers of the following problem

(P )

min f(x) =
1

2
x2

1 +
1

2
x2

2 +
1

2
x2

3

subject to x1 + x2 + x3 = 1

x2 − 2x3 = −1

x1 + 3x3 = 2.

and the second order sufficient is satisfied at the minimizer.
Solution: The constraint is redundant and consistent (the sum of the second and the third

equation is the first one). We can solve the following equivalent problem

(P ′)

min f(x) =
1

2
x2

1 +
1

2
x2

2 +
1

2
x2

3

subject to x1 + x2 + x3 = 1

x2 − 2x3 = −1.

The Lagrange function is

L(x, λ) =
1

2
x2

1 +
1

2
x2

2 +
1

2
x2

3 − λ1(x1 + x2 + x3 − 1)− λ2(x2 − 2x3 + 1)
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The minimizer satisfies

∇xL(x∗, λ∗) =

 x∗1 − λ∗1
x∗2 − λ∗1 − λ∗2
x∗3 − λ∗1 + 2λ∗2

 = 0

or x∗1 = λ∗1, x
∗
2 = λ∗1 + λ∗2, x

∗
3 = λ∗1 − 2λ∗2. Substituting it into the constraint, we have

1 = x∗1 + x∗2 + x∗3 = 3λ∗1 − λ∗2
−1 = x∗2 − 2x∗3 = −λ∗1 + 5λ∗2 (4)

The solution of this system is given by λ∗1 = 2/7 and λ∗2 = −1/7. Finally the minimizer is x∗ =
(2/7, 1/7, 4/7).

The necessary conditions and sufficient condition should also be applied to the reduced system.
Write the solution x̄ = x∗ + Zv, we should have the equivalent first order condition Zt∇f(x∗) = 0.
If the columns of Z are linear independent, then Zt∇2f(x∗)Z must be positive definite because
∇2f(x) is obviously positive definite (It is possible that Zt∇2f(x∗)Z without∇2f(x∗) being positive
definite. See the next example).

If you using Lagrange Multiplier for the original problem (P ), there is one parameter family of
solution. The minimizer is unique but the Lagrange multiplier is not.

Example 2.4. Find the minimizer of the following problem

min f(x) = x2
1 − 2x1 + x2

2 − x2
3 + 4x3

subject to x1 − x2 + 2x3 = 2.

and show that the second order sufficient condition is satisfied at this point. Is x̄ = (2, 0, 0) is a
minimizer? If not, find a direction such that f decrease from this point.

Solution: The Lagrange function is

L(x, λ) = x2
1 − 2x1 + x2

2 − x2
3 + 4x3 − λ(x1 − x2 + 2x3 − 2).

The minimizer satisfy the condition

∇xL(x∗, λ∗) =

 2x∗1 − 2− λ∗
2x∗2 + λ∗

−2x∗3 + 4− 2λ∗

 = 0

or x∗ = (1 + λ∗/2,−λ∗/2, 2− λ∗). Substituting it into the constraint

2 = x∗1 − x∗2 + 2x∗3 = 5− λ∗

or λ∗ = 3 and x∗ = (5/2,−3/2,−1). The general solution can be written as x = x∗ + Zv where

Z =

1 2
1 0
0 −1

 , v =

(
v1

v2

)
.

It is easy to see that

∇f(x∗) =

 3
−3
6

 , ∇2f(x∗) =

2 0 0
0 2 0
0 0 −2

 .
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Since

Zt∇f(x∗) =

(
1 1 0
2 0 −1

) 3
−3
6

 =

(
0
0

)
the first order condition is satisfies. Since

Zt∇2f(x∗)Z =

(
1 1 0
2 0 −1

)2 0 0
0 2 0
0 0 −2

1 2
1 0
0 −1

 =

(
2 2 0
4 0 2

)1 2
1 0
0 −1

 =

(
4 4
4 6

)

is positive definite, the second order sufficient condition is satisfied too; x∗ is a local minimizer.
At x̄ = (2, 0, 0), since ∇f(x̄) = (2, 0, 4)t CAN NOT be written as a linear combination of

columns of Z (no solution to ∇f(x̄) = Atλ for any λ). From the discussion in Example 2.2, we can
find λ to the problem

A(∇f(x̄)−Atλ) = A∇f(x̄)−AAtλ = 0,

where A = (1,−1, 2). Since
AAt = 6, A∇f(x̄) = 10,

we get λ = 5/3. The decreasing direction at x̄ is then given by

d = Atλ−∇f(x̄) =

 5/3
−5/3
10/3

−
2

0
4

 =

−1/3
−5/3
−2/3

 .

To see this is indeed the decreasing direction, define

ϕ(t) = f(x̄+ td) = f(2 + t/3,−5t/3, 2t/3) =
22

9
t2 − 2t.

The fact that ϕ′(0) = −2 < 0 implies that as x moves from x̄ in the direction d, the function value
decreases.

Another way to find the decreasing direction comes from the general solution x = x̄ + Zv and
the reduction to φ(v) = f(x̄+ Zv). Since

∇vφ(0) = Zt∇f(x̄) = −d′ 6= 0

We can choose v = d′, which is also a decreasing direction.

2.2 Linear Inequality constraints

For inequality constraints (linear or nonlinear), the most import thing is the sign of the Lagrange
Multiplier, which tells you how the function value changes if the constant in the constraint changes.
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x1

x2

421

1

3

4

2

3

c1

c3

c2

x∗

Example 2.5. Consider the following problem

min f(x) =
1

2
x2

1 +
1

2
x2

2

subject to x1 + 2x2 ≥ 2 (c1)

x1 − x2 ≥ −1 (c2)

− x1 ≥ −3. (c3)

(a) What’s the active set, according to the graph?

(b) Solve the problem subject inequality constraint(s) in the active set, using Lagrange Multiplier.

(c) If x is close to x∗, but still in the feasible region, how does the objective function change?

(d) How about the Lagrange Multipliers with the rest inactive set?

Solution: (a) A(x∗) = {1}
(b) We are solving the problem

min f(x) =
1

2
x2

1 +
1

2
x2

2

subject to x1 + 2x2 = 2.

The Lagrange function L(x, λ) =
1

2
x2

1 +
1

2
x2

2 − λ(x1 + 2x2 − 2). The solution is governed by

∇xL(x∗, λ∗) =

(
x∗1 − λ∗
x∗2 − 2λ∗

)
=

(
0
0

)
,

or x∗1 = λ, x∗2 = 2λ∗. Substituting them back into the constraint, we have

2 = x∗1 + 2x∗2 = 5λ∗
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or λ∗ = 2/5 and x∗ = (2/5, 4/5).
(c) For x close to the x∗, we have from Taylor expansion

f(x) = f(x∗) +∇f(x∗)t(x− x∗) + · · ·

Especially, when the only active constraint c1 is changed to x1 + 2x2 ≥ 2 + δ (for δ small) then we
have the new optimal function value is f(x∗δ) = f(x∗) + λ∗δ + · · · .

(d) The Lagrange Multipliers for the inactive constraints are always zero, i.e., λ∗2 = λ∗3 = 0.
Therefore, in the equation

0 = ∇xL(x∗, λ∗) = ∇f(x∗)−
∑
i

λ∗i∇ci(x∗),

it does not matter whether the indices i chosen from all the constraints E ⋂ I or just the active
constraints A(x∗). For simplicity, we often choose the latter.

Example 2.6. The same previous problem, what if we erroneously guessed only the third constraint
−x1 ≥ −3 was active?

(i) Find the minimizer x̃∗ under this (wrong) active constraint.

(ii) Find a feasible direction at x̃∗ along which the objective function is decreasing.

Solution: (i) If c3 is the only active constraint, the optimization problem is equivalent to

min f(x) =
1

2
x2

1 +
1

2
x2

2

subject to − x1 = −3.

The Lagrange function is L(x, λ) =
1

2
x2

1 +
1

2
x2

2 − λ(3− x1). The solution is given by

∇xL(x∗, λ∗) =

(
x∗1 + λ∗

x∗2

)
=

(
0
0

)
,

or x∗ = (3, 0) and λ∗ = −3. Since the Lagrange Multiplier is negative, this point should not be a
local minimizer of the original problem.

(ii) The feasible decreasing direction is just d = ∇c3(x∗) = (−1, 0). When the active constraint
is changed to −x1 ≥ −3+ δ for δ small enough, it is still active and gives the optimal function value
f(x∗) + λ∗δ + · · · < f(x∗). This is obvious from explicit calculation of this problem.

Theorem 2.3 (Necessary condition for linear ineq constr). If x∗ is a local minimizer of f over the
set {x : Ax ≥ b}, then for some vector λ∗ of Lagrange multipliers,

• Ax∗ ≥ b (x∗ is feasible)

• λ∗t(Ax∗ − b) = 0, λ∗ ≥ 0 (complementarity)

• ∇f(x∗) = ATλ∗ (or Zt∇f(x∗) = 0) (first order condition)

• Zt∇2f(x∗)Z is nonnegative definite. (second order condition)
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Remark. Here columns of Z are a basis of the null spaces of the active constraints of Ax ≥ b, i.e.,
the submatrix Â, such that Âx∗ = b̂.

Remark. We actually have to require that rows of A are linear independent (Linear Indepen-
dence Constraint Qualification induced later), but it is easy to fixed there. We either get redundant
constraints or inconsistent constraints (infeasible).

Example 2.7. Show that x∗ = (2/5, 4/5) is a strict local minimizer in Example 2.5.
Solution: It is easy to see that x∗ is feasible and the complementarity condition λ∗t(Ax−b) = 0

is satisfied and λ∗ = (2/5, 0, 0) ≥ 0. The condition ∇f(x∗) = Atλ∗ holds too. The only thing we
have to check is the second order sufficient condition. Columns of Z are a basis of the null space of
the active constraint, i.e., all vectors d = (d1, d2) such that d1 + 2d2 = 0. Therefore Z has just one

column, and can be chosen as Z =

(
2
−1

)
. Since ∇2f(x∗) =

(
1 0
0 1

)
, we have

Zt∇2f(x∗)Z =
(
2 −1

)(1 0
0 1

)(
2
−1

)
= 5 > 0,

and x∗ is a strict minimizer.

Example 2.8 (Strict complementarity). Consider the problem

min f(x) = x3
1 + x2

2

subject to − 1 ≤ x1 ≤ 0.

Show that x∗ = (0, 0) is NOT a local minimizer, but it satisfies all the necessary conditions except
strict complementarity.

Theorem 2.4 (Sufficient Condition 1). If x∗ satisfies all the necessary condition and additionally

• Strict complementarity holds

• Zt∇2f(x∗)Z is positive definite,

then x∗ is a strict local minimizer for the problem

min f(x) subject to Ax ≥ b.

If the strict complementary does not hold, one sufficient condition is to test the reduced Hessian
Z∗∇2f(x∗)Z, where Z DOES NOT have to be in the null space of those non-strict complementarity
constraints.

Theorem 2.5 (Sufficient Condition 2). Let Â+ be the submatrix of Â corresponding to the non-
degenerate active constraints at x∗ (those constraints whose Lagrange Multiplier are positive). Let
Z+ be a basis matrix for the null space of Â+. If x∗ satisfies

• Zt+∇2f(x∗)Z+ is positive definite,

then x∗ is a strict local minimizer for the problem

min f(x) subject to Ax ≥ b.
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Example 2.9. Redo Example 2.8. Show that the sufficient condition in Theorem 2.5 does not hold
at x∗ = (0, 0).

Solution: Since the only active constraint −x1 ≥ 0 does not satisfy the strict complementarity,
there is no constraint on Z or Z = I, the identity matrix in R2. Since

Z∇2f(x∗)Z = ∇2f(0, 0) =

(
0 0
0 2

)
is only positive semidefinite (not positive definite), the sufficient condition does not hold.

If there are mixed equality and inequality constraint, we only need to check the sign of λi for
i ∈ I but not for i ∈ E .

Example 2.10. Solve the following problem

min f(x) = x3
1 − x3

2 − 2x2
1 − x1 + x2

subject to − x1 − 2x2 = −2,

x1 ≥ 0,

x2 ≥ 0.

2.3 Nonlinear Constraints

With the presence of nonlinear constraints, there are two more things should be taken care of:

(a) Linear Independence Constraint Qualification

(b) Second order condition is changed to Zt∇L(x∗, λ∗)Z instead of Zt∇2f(x∗)Z.

Linear Independence constraint qualification (LICQ) holds at a point x if the set of
active constraint gradients {∇ci(x), i ∈ A(x)} is linearly independent.

This requires some understanding of the description of the feasible region Ω, given by the
constraints. In general, the same feasible can be described in different ways. In general, we want ci
to be smooth and ∇ci(x) 6= 0.

Example 2.11. For the same region Ω = [0,∞), which of the following is a good algebraic descrip-
tion of Ω?

(a) {x | x3 ≥ 0}

(b) {x | ex ≥ 1}

(c) {x | x1/3 ≥ 0}

To understand the constraint qualification, we have to introduce the tangent cone TΩ(x∗) and
the linearized feasible direction F(x∗).

The vector d is a tangent (or tangent vector) to Ω at a point x if there are a feasible sequence
{zk} approaching x and a sequence of positive scalars {tk} with tk → 0 such that

lim
k→∞

zk − x
tk

= d
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The set of all tangents to Ω at x∗ is called the tangent cone and is denoted by TΩ(x∗).

The set of linearized feasible direction F(x) at a feasible point x

F(x) =

{
d | d

t∇ci(x) = 0, for all i ∈ E
dt∇ci(x) ≥ 0, for all i ∈ A(x)

⋂ I
}

In general, among all the different ways, we should write our constraints ci such that F(x∗)
(defined purely from the algebraic expressions cis) agrees with TΩ(x∗) (related only to the unique
geometry of Ω).

Example 2.12. Find the tangent cone TΩ(x∗) and the linearized feasible direction F(x∗) for the
feasible regions defined below at x∗. Are they the same for both case?

• {x | x2
1 + x2

2 − 2 = 0}, x∗ = (−
√

2, 0)

• {x | x2
1 + x2

2 − 2 ≤ 0}, x∗ = (−
√

2, 0)

Example 2.13. Show that the tangent cone TΩ(x∗) and the linearized feasible direction F(x∗) are
different at x∗ = (0, 0) for the feasible region defined by

Ω = {x | 1− x2
1 − (x2 − 1)2 ≥ 0, −x2 ≥ 0}.

The first order necessary conditions for the general constraint optimization problem

min f(x)

subject to ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I.

are exact the same as that with linear constraints, except with the addition LICQ condition.

Theorem 2.6 (First-order necessary (KKT) conditions). Suppose x∗ is a local solution, f and ci
are continuously differentiable and the LICQ holds at x∗. Then there exist a Lagrange multiplier
λ∗, i ∈ E ⋃ I, such that

(1) ci(x∗) = 0, for all i ∈ E (Feasible condition for equality constraints )

(2) ci(x∗) ≥ 0, for all i ∈ I (Feasible condition for inequality constraints)

(3) λ∗i ≥ 0, for all i ∈ I

(4) λ∗i ci(x
∗) = 0, for all i ∈ E ⋃ I (Complementarity)

(5) ∇xL(x∗, λ∗) = 0

To find the second order conditions, we need the critical cone

C(x∗, λ∗) = {w ∈ F(x∗)|∇ci(x∗)tw = 0, ∀ i ∈ A(x∗)
⋂
I with λ∗i > 0}

= {w | ∇ci(x∗)tw = 0 for i ∈ E or i ∈ A(x∗)
⋂
I with λ∗i > 0}.
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Theorem 2.7 (Second-order necessary conditions).

wT∇xxL(x∗, λ∗)w ≥ 0, ∀ w ∈ C(x∗, λ∗).

Theorem 2.8 (Second-order sufficient conditions).

wT∇xxL(x∗, λ∗)w > 0, ∀ w ∈ C(x∗, λ∗), w 6= 0.

Example 2.14. Find the solution of the following problem

min f(x) = x1 + x2

subject to c1(x) = x2
1 + x2

2 − 2 = 0.

Solution: The Lagrange function is

L(x, λ) = x1 + x2 − λ(x2
1 + x2

2 − 2)

and the solution satisfies

∇xL(x∗, λ∗) =

(
1− 2λ∗x∗1
1− 2λ∗x∗2

)
=

(
0
0

)
,

or x∗ =

(
1

2λ
,

1

2λ

)
. Substituting it into the constraint

2 = x∗21 + x∗22 =
1

2λ∗2

or λ∗ = ±1

2
. We can use the second order optimality condition to choose the right λ∗ for a

minimizer. Since ∇c1(x∗) = (2x∗1, 2x
∗
2)t = (1/λ∗, 1/λ∗), for any vector w = (d1, d2)t in the critical

cone C(x∗, λ∗), we have ∇c1(x∗)td = 0 or d1 + d2 = 0 or w = (d,−d) for d ∈ R. Moreover, since

∇2
xL(x∗, λ∗) =

(
−2λ∗ 0

0 −2λ∗

)
, x∗ is a minimizer if and only if wt∇2

xL(x∗, λ∗)w = −4λ∗d2 > 0 for

d 6= 0. Therefore, we must choose λ∗ = −1/2 and x∗ = (−1,−1).

Example 2.15. Find the solution of the following problem

min f(x) = x1 + x2

subject to c1(x) = 2− x2
1 − x2

2 − 2 ≥ 0.

In this example, λ∗ is determined from the first order necessary condition for minimizers (which
is compatible with the second order condition). In the previous example, the sign of λ∗ does not
matter because the constraint is an equality.

Example 2.16. Consider the problem

min f(x) = x1

subject to (x1 + 1)2 + x2
2 ≥ 1

x2
1 + x2

2 ≤ 2.

(a) Use graphic method to find the global minimizer and verify the optimality conditions are satisfied
there.
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(b) Is (0, 0) a local minimizer? If not, which optimality condition is violated?

Example 2.17 (Counterexample for LICQ). Consider the following problem

min f(x) = 3x1 + 4x2

subject to (x1 + 1)2 + x2
2 = 1

(x1 − 1)2 + x2
2 = 1

(i) Find the feasible region and the minimizer.

(ii) Can you find the Lagrange Multiplier λ∗?

3 Duality

Lagrange Multipliers play an important role in constrained optimization. Here are some facts:

(a) Complementarity: For inactive constraints ci(x∗) ≥ 0, the corresponding Lagrange Multiplier
λ∗i = 0.

(b) If the constraint ci(x) ≥ 0 ( or ci(x) = 0) is perturbed to ci(x) ≥ δ (or ci(x) = δ) then the
Lagrange function evaluated at the optimal x∗δ and λ∗δ has the relation

d

dδ
Lδ(x

∗
δ , λ
∗
δ)

∣∣∣∣
δ=0

= λ∗i

or
Lδ(x

∗
δ , λ
∗
δ) = L(x∗, λ∗) + λ∗i δ +O(δ2)

(c) The inequality constraint ci is strongly active (or Strict Complementarity) if i ∈ A(x∗) and
λ∗i > 0. It is weakly active if i ∈ A(x∗) and λ∗i = 0.

The Lagrange Multipliers for constraints can be regarded as dual variable for an associated
problem, the so-called dual problem.

3.1 Min-Max Duality

Most of the duality-related problems can be formulated by min-max and max-min.

Example 3.1 (Two-person Zero-sum Game represented as matrix). . Let the payoff that A chooses
strategy Ai and B chooses strategy Bj be aij , represented as

B chooses B1 B chooses B2 B chooses B3
A chooses A1 +3 -2 +2
A chooses A2 -1 0 +4
A chooses A3 -4 -3 +1

The goal of A is to maximize the payoff (and B to minimize A’s payoff). But the strategy
depends on who plays first. If A choose strategy Ai, then B chooses the minimal payoff, i.e minj aij
and we have that the payoff A gets for choosing Ai is

min
j

a1j = −2, min
j

a2j = −1, min
j

a3j = −4.
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Then A must choose A2 to maximize it (and B chooses B1).
On the other hand, if B plays first and choose Bj , then A chooses the maximum payoff maxij aij ,

or
max
i

ai1 = 3, max
i

ai2 = 0, max
i

ai2 = 4

respectively. Then B’s optimal choice is B2 (and A chooses A2). In this case, we have

max
i

min
j

aij = −1 < min
j

max
i

aij = 0.

Similarly, for general function f(x, y), we always have the weak duality:

max
y∈Y

min
x∈X

f(x, y) ≤ min
x∈X

max
y∈Y

f(x, y).

Under certain conditions, we have equality sign:

Theorem 3.1 (Strong duality). The condition

max
y∈Y

min
x∈X

f(x, y)= min
x∈X

max
y∈Y

f(x, y)

holds if and only if there exists a pair (x∗, y∗) that satisfies the saddle-point condition

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗)

for all x ∈ X and y ∈ y.

3.2 Lagrangian Duality

The Lagrangian duality for the problem

(P ) min
x∈Rn

f(x) subject to c(x) ≥ 0,

uses the previous min-max techniques to the Lagrange function L(x, λ) = f(x) − λtc(x). The key
idea is to get rid of any constraints on x, by introducing the Lagrange multipliers λ, such that
those constraints are transferred on λ. This can be accomplished by the following fact

max
λ≥0

−λtc(x) =

{
0, if c(x) ≥ 0,

∞, otherwise.

Therefore, if the above problem (P ) is feasible, then it is equivalent to the “unconstrained
problem” minx L

∗(x) where

L∗(x) = max
λ≥0

L(x, λ) =

{
f(x), if g(x) ≥ 0,

∞, otherwise.

The function L∗ coincides with f on the feasible region, but becomes +∞ outside it.
The dual problem can be obtained by exchanging the order of min and max. Define the dual

objective function q as
q(λ)

def
= inf

x
L(x, λ)

The dual problem is:
max
λ∈Rm

q(λ) subject to λ ≥ 0.
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Example 3.2. Find the dual problem for

min
x∈R2

1

2
(x2

1 + x2
2) subject to x1 − 1 ≥ 0.

Solution: We have L(x, λ) = 1
2(x2

1 + x2
2)− λ(x1 − 1) and

q(λ) = min
x
L(x, λ)

For fixed λ, the minimizer is given by

∇xL(x, λ) =

(
x1 − λ
x2

)
=

(
0
0

)
.

Therefore, x∗1 = λ, x∗2 = 0 and

q(λ) = L((λ, 0), λ) = λ− 1

2
λ2.

The dual problem is

max
λ≥0

q(λ) = max
λ≥0

λ− 1

2
λ2.

The maximizer is λ∗ = 1 > 0. It is easy to check that in this case we have

min
x

max
λ≥0

L(x, λ) = max
λ≥0

min
x
L(x, λ) = 1/2.

The dual problem can be different, depending on the type of constraints.

Example 3.3. Find the dual problem and solve it for the following optimization:

(a) min
x

1

2
(x2

1 + x2
2) subject to x1 + x2 ≥ 2

(b) min
x

1

2
(x2

1 + x2
2) subject to x1 + x2 ≤ 2

(c) min
x

1

2
(x2

1 + x2
2) subject to x1 + x2 = 2

Sometimes, for a given λ, the solution x for the minimization problem minx L(x, λ can not be
written explicitly. In this case, we can write x implicitly as ∇xL(x, λ) = 0.

Example 3.4 (Wolfe Duality). Consider the problem

min f(x) subject to c(x) ≥ 0.

The dual problem is
max
λ≥0

min
x
L(x, λ)

can be written as
max
λ≥0

L(x, λ) subject to ∇xL(x, λ) = 0.
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Because of the equality, we can “maximize” w.r.t x in the objective function L, which gives the
Wolfe duality

max
x,λ

L(x, λ)

subject to ∇xL(x, λ) = 0

λ ≥ 0,

under the condition that f is convex.

Example 3.5. Consider the problem

min f(x) = ex, subject to 1− x2 ≥ 0.

Formulate it as in Wolfe duality. For this one, you can simplify your constraint and get the exact
solution.

For the problem
min f(x) subject to c(x) ≥ 0,

and the dual problem
max
λ≥0

q(λ)

we still have the weak duality
q(λ) ≤ f(x)

for any λ ≥ 0 and x feasible (c(x) ≥ 0). If fact, we have

max
λ≥0

q(λ) ≤ min
c(x)≥0

f(x).

However, the equality may not hold in this case, especially when one problem is infeasible or
unbounded and we say that there is a duality gap.

Example 3.6 (Duality gap). Consider the problem

min f(x) = −x2

subject to x = 1

x ∈ X = {x : 0 ≤ x ≤ 2}.

What’s the optimal solution? Formulate the duality problem as (slightly different because we don’t
introduce Lagrange Multipliers for the constraint x ∈ X )

min
x∈X

max
λ
−x2 − λ(x− 1), max

λ
min
x∈X

−x2 − λ(x− 1).

Find the solution.

Example 3.7 (Infinity Duality Gap). Consider the problem

min f(x) = −x2

subject to 0 ≤ x ≤ 1.

Solve this problem and the dual problem.

18



Example 3.8 (Duality of a Linear program). Consider the linear program

min f(x) = ctx

subject to Ax = b

x ≥ 0.

Solution: Introduce y for the constraint Ax = b and λ for x ≥ 0, then

L(x, y, λ) = ctx− yt(Ax− b)− λtx.

The dual problem is

max L(x, y, λ) = ctx− yt(Ax− b)− λtx
subject to c−Aty − λ = 0

λ ≥ 0.

which is equivalent to
max L(x, y, λ) = bty

subject to Aty ≤ c.

Example 3.9 (Duality of a quadratic program). Consider the quadratic program

min f(x) =
1

2
xtQx+ ctx

subject to Ax ≥ b.

where Q is a positive definite matrix.
Solution:

max
x,λ

1

2
xtQx+ ctx− λt(Ax− b)

subject to Qx+ c−Atλ = 0

λ ≥ 0.

We can eliminate x from the constraint and get the equivalent problem

max
x,λ

− 1

2
λt(AQ−1At)λ+ (AQ−1c+ b)tλ− 1

2
ctQ−1c

subject to λ ≥ 0.
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