
Review for the first Midterm

October 30, 2015

The first midterm covers all the materials on the slides, up to the end of unconstrained problem (least
square problems). NO MATLAB implementation related questions, but details, stability and convergence
properties of some algorithms may be asked. If you don’t have enough time, the review notes and the practice
problems (on a separate files) should be more than enough for preparing the first midterm. Good luck.

Contents

1 Introduction

1.1 Convex sets and Convex functions
The concepts of convex sets and convex functions play an essential role in optimization. Convex optimization
problems are almost as “easy” as linear optimization problems (thought no simplex method) and the same
time have the special structure to be adapted to many efficient algorithms.
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Figure 1: The first (northwest) set is convex and others are not.

A set Ω is convex if for any x, y ∈ Ω, the line segment [x, y] is in Ω, or

(1− λ)x+ λy ∈ Ω (1)

for any λ ∈ [0, 1] (see Figure ??). A function f , defined on a convex set Ω, is convex if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y). (2)

This condition is geometrically interpreted in Figure ??.
There are a lot of equivalent criteria that characterize convex functions.
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f ((1− λ)x + λy)

Figure 2: Geometric interpretation of a function f is convex: the graph of the function f on the interval
between x and y always lies below the straight line connecting (x, f(x)) and (y, f(y)).

Theorem 1.1. For a smooth function f(x) of a single variable x ∈ R, the following are equivalent

(a) The function f is convex in the sense of (??).

(b) The first order derivative f ′ is increasing.

(c) The second order derivative f ′′ is nonnegative.

Similar when f is a function of multiple variables x ∈ Rn, we have the following.

Theorem 1.2. For a smooth function f(x) for multiple variable x ∈ Rn, similarly the following are equivalent

(a) The function f is convex in the sense of (??)

(b) The gradient ∇f is monotone, i.e.

(∇f(y)−∇f(x), y − x) ≥ 0, ∀x, y ∈ Ω.

(c) The Hessian matrix ∇2f is nonnegative definite, i.e. pt∇2f(x)p ≥ 0 for any p ∈ Rn and any x ∈ Ω.

These conditions can be used to show that a function is convex.

Example 1.1. Show that f(x) = − lnx is convex on (0,∞).
Since f ′(x) = −1/x and f ′′(x) = 1/x2 > 0 on (0,∞), f(x) is convex on (0,∞).

Example 1.2. Show that the function f(x, y) = x4/2 + x2y2 + y4/2 is convex on R2.
The gradient and Hessian matrix of f are

∇f(x, y) =

(
2x3 + 2xy2

2x2y + 2y3

)
, ∇2f(x, y) =

(
6x2 + 2y2 4xy

4xy 2x2 + 6y2

)
.

It is easy to see that tr(∇2f(x, y)) = 8(x2 + y2) ≥ 0 and det(∇2f(x, y)) = 12(x4 + y4 + 2x2y2) = 12(x2 +
y2)2 ≥ 0. The characteristic equation is

det
(
λI −∇2f(x, y)

)
= λ2 − λtr(∇2f(x, y)) + det(∇2f(x, y)) = 0,

2



and the roots are given by

λ± =
tr(∇2f(x, y))±

√
tr(∇2f(x, y))2 − 4det(∇2f(x, y))

2
.

Since the discriminant

tr(∇2f(x, y))2 − 4det(∇2f(x, y)) = 16(x4 + 2x2y2 + y4) = 16(x2 + y2)2 ≥ 0,

there are two real root. Since λ+ is nonnegative, from the relation λ+λ− = det(∇2f(x, y))2−4det(∇2f(x, y)) ≥
0, λ− ≥ 0. Therefore, f is convex on R2.

Many times the function f is convex only on part of the domain, which is exactly the region where the
second order derivative (or Hessian matrix) is nonnegative (nonnegative definite).

Example 1.3. Find the largest connected domain (one if there are more than one) on which f(x) = e−x
2/2

is convex.
Since f ′(x) = −xe−x2/2 and f ′′(x) = (x2− 1)e−x

2/2, f is convex for on the domain where f ′′(x) ≥ 0, i.e.,

(x2 − 1)e−x
2/2 ≥ 0

or |x| ≥ 1. Therefore the last connected domain on which f is convex is [1,∞) (or (−∞,−1]).

There are other important non-smooth convex functions, one of which is in the form of norms of a vector
for the absolute value for scalars.

Example 1.4. Show that f(x) = ‖x‖p = (|x1|p + · · ·+ |xn|p)1/p is convex when p ≥ 1.
We can show this using the definition of the convexity and the triangle inequality of norms as follow:

f((1− λ)x+ λy) = ‖(1− λ)x+ λy‖p
≤ ‖(1− λ)x‖p + ‖λy‖p (Triangle inequality ‖x+ y‖p ≤ ‖x‖p + ‖y‖p)
= (1− λ)‖x‖p + λ‖y‖p (Homogeneity of norm ‖λx‖ = |λ|‖x‖)
= (1− λ)f(x) + λf(y). (3)

We can show some functions are convex, building on other convex functions.

Example 1.5. Show that if f and g are convex on Ω, so is h(x) = max[f(x), g(x)].
For any x, y ∈ Ω, λ ∈ [0, 1], without loss of generality, we can assume that

h((1− λ)x+ λy) = max [f((1− λ)x+ λy), g((1− λ)x+ λy)] = f((1− λ)x+ λy).

Therefore,

h((1− λ)x+ λy) = f((1− λ)x+ λy)

≤ (1− λ)f(x) + λf(y) (f is convex)

≤ (1− λ) max[f(x), g(x)] + λmax[f(y), g(y)]

= (1− λ)h(x) + λh(x). (Definition of h) (4)

This proves that h is convex.

More convex functions in the rest of this class.
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1.2 Graphic method for the (simple) optimization problems
For simple problems (mainly for two variables), a lot of problems can be solved just graphic method, by
plotting the feasible region (the region that all the constraints are satisfied and then the level sets (or contours)
of the objective function. Depending on the problem is maximization or minimization, the problem is solved
by moving these contours.

Example 1.6. Solve the following problem using graphic method.

minimize
x

f(x1, x2) =
√

(x1 − 2)2 + (x2 − 2)2

subject to x1 + x2 = 2

1 2 3 x1

x2
3

2

1

x1 + x2 = 2

√
(x1 − 2)2 + (x2 − 2)2 = c

(x∗1, x
∗
2)

Figure 3: Graphic method for Example 1.6.

The constraint x1 + x2 = 2 is just a straight line. The contour line for the objective function is all the
points (x1, x2) such that

√
(x1 − 2)2 + (x2 − 2)2 = c for the same constant c. The minimizer is the point

(x∗1, x
∗
2) = (1, 1), the point where the contour line is tangent with the straight line. The minimal value is√

1 + 1 =
√

2.

Example 1.7. Find the minimizer of the following problem by graphic method.

minimize
x

f(x1, x2) =
√

(x1 − 2)2 + (x2 − 2)2

subject to x1 ≤ 0.75,

x2 ≤ x1.

Since the constraints are now inequalities, each inequality corresponds to a region (instead of a line for
equality constraint). Determine first the boundary of the region (by taking the equality in the constraint),
and then which side of the region is feasible. The second step is not always so straightforward, you can take
some special points or the asymptotic region to help you select the right region. For example, the points
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x1 ≤ 0.75

1 2 3 x1

x2
3

2

1

x2 ≤ x1

Figure 4: Graphic method for Example 1.7.

x1 → +∞ and x2 → −∞ is definitely in the feasible region for the constraint x2 ≤ x1. This implies that
we should choose the lower right part of the region. Finally, take the intersection of all feasible regions
corresponding to one single constraint.

For this problem, the minimizer is (x∗1, x
∗
2) = (0.75, 0.75).

The graphic method gives a lot of insights for the constrained optimization in the later of the semester,
and helps the understanding of how the conditions for local minimizer/maximizer should be modified.

1.3 Rate of convergence
The rate of convergence is used to measure how fast a particular algorithm approaches its optimal. It can
be measured either as a quotient (Q-convergence) such that

|xn+1 − x∗|
|xn − x∗|

≤ r

for all n large or as a power
|xn − x∗|1/n ≤ r.

Here r is called the rate constant. In both case. we need r < 1 for convergence. If such a number r goes to
zero, as n increases, it is called Q-superlinear, i.e.,

lim
n→∞

|xn+1 − x∗|
|xn − x∗|

= 0.

An even faster convergence is possible (as in the Newton’s method) is

|xn+1 − x∗| ≤ C|xn − x∗|2,

for some nonnegative number C.
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Example 1.8. When Newton’s method is applied to f(x) = x4 with the starting point x0 = 1. Find the
recursive formula, the solution at each iteration and the convergence rate.

Since f ′(x) = 4x3 and f ′′(x) = 12x2, the Newton’s method is

xn+1 = xn −
f ′(xn)

f ′′(xn)
= xn −

1

3
xn =

2

3
xn.

The solution at each iteration is given by

xn =
2

3
xn−1 =

(
2

3

)2

xn−2 = · · · =
(

2

3

)n
.

Therefore, it converges to

x∗ = lim
n→∞

(
2

3

)n
= 0.

Since
|xn+1 − x∗|
|xn − x∗|

=
2

3
= r,

the convergence is Q-linear (also R-linear) and the rate constant is 2/3.

2 Unconstrained Optimization

2.1 Necessary and sufficient conditions for smooth functions
Theorem 2.1 (Necessary conditions). If x∗ is optimal, then

• 1st-order necessary condition (NC1): ∇f(x∗) = 0

• 2nd-order necessary condition (NC2): the Hessian ∇2f(x∗) is positive definite

These conditions are necessary, in the sense that if they are violated, we can find a nearby point x
with smaller function value, hence it can not be optimal. If ∇f(x∗) 6= 0, then we can find a point with
smaller function value along the negative gradient direction p = −∇f(x∗). The tool for the proof is Taylor’s
Expansion, and the technique part is that which version to use and how to use it. You should remember of
the intuition, but forget about the technique part.

Similarly, if ∇f(x∗) = 0 but ∇2f(x∗) is NOT non-negative definite, i.e., there exists p(6= 0) ∈ Rn, such
that ptAp < 0. The the function value is also going to decreasing along the direction p (or φ(t) = f(x∗+ tp)
is decreasing on [0, δ) for δ small).

Theorem 2.2 (Sufficient condition (SC2)). If x∗ is such that ∇f(x∗) = 0 and ∇2f(x∗) is positive definite,
then x∗ is a local minimum.

If the Hessian matrix ∇2f(x∗) is only nonnegative definite, then we need higher order derivatives to get
a conclusion.

Theorem 2.3 (Sufficient condition with higher order derivatives(for a function of one single variable)). If
at a point x∗, we have

f ′(x∗) = 0, f ′′(x∗) = 0, · · · , f (n−1)(x∗) = 0, f (n)(x∗) 6= 0.

If n is odd, then x∗ is neither a local minimizer nor a local maximizer (called saddle point); if n is even and
f (n)(x∗) > 0, then x∗ is a local minimizer; if n is even and f (n)(x∗) < 0, then x∗ is a local maximizer.

Example 2.1. Find all the points x∗ such that f ′(x∗) = 0 for the following function, determine it is a local
minimizer, a local maximizer or a saddle point.

f(x) = x4 + 4x3 + 6x2 + 4x. (5a)

f(0) = 0, f ′(x) = (x+ 1)x2(x− 1)3. (5b)

f(x) = x+ sin(x). (5c)
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In general, we have to find all the minimizers, compare their function value and obtain the global maxi-
mizer. There are different ways to show a given minimizer x∗ is a global minimizer. If ∇f(x∗) = 0 has only
one solution, then it must be the global one, otherwise we need convexity.

Theorem 2.4. If f is convex, then any local minimizer x∗ is a global minimizer.

Example 2.2. Find the maximum likelihood estimator λ from the sample points ti, by maximizer the
function

L =

m∏

i=1

λe−λti

Show that the estimate you find is the global minimizer, by showing that − lnL is convex (or lnL is convex).

2.2 Piecewise-smooth function
If the function f is only piecewise smooth, we can consider the function on the interval on which it is smooth,
and the local minimizer and then the global minimizer.

Example 2.3. Find the minimizer of f(x) = min(|x| − 1, 0).
The function f(x) = 0 if and only if |x| − 1 ≤ 0 or |x| < 1. Therefore,

f(x) =





x− 1, x ≥ 1,

0, −1 ≤ x ≥ 1

−x− 1, x ≤ −1.

Since f ′(x) = 1 on x ≥ 1, it is increasing and the minimizer is obtained at x = 1 with minimal value
f(1) = 0. Similarly f(x) is decreasing on x ≤ −1 and has a minimizer at x = −1 with minimal value
f(−1) = 0. Therefore, the minimizer is the interval [−1, 1] with minimal value 0. Obviously, the minimizers
are not strict.

Example 2.4. Find the minimizer of

f(x) = |x− x1|+ |x− x1|+ · · ·+ |x− xm|, x1 < x2 < · · · < xm.

2.3 Algorithms
You should be to produce one or two iteration of Steepest Descent method or Newton’s method, but not
the details of Conjugate Gradient method and forget about the formulas in Quasi-Newton method. Some
problems may test your understanding of these methods: the advantage and disadvantages (under some
conditions), the convergence rate, and the stability.

2.4 Least Square problem
The least square problem are originated from data fitting. We can actually get “solution” to overdetermined
problems, using the least square approach.

Example 2.5. Consider the system of linear equations

x = 4

y = 6

x+ y = 2.

1. Write the system in the form Ax = b. Is the system consistent?

2. Find the point (x∗, y∗) that minimizes the error ‖Ax− b‖22. Calculate Ax− b and the error ‖Ax− b‖22.
3. Now find the point on the line y = 3 that minimizes the error ‖Ax− b‖22. What is the error ‖Ax− b‖22

for this solution? Compare to the error ‖Ax− b‖ from the previous part.

4. Sketch the linear equations. Mark both optimal solutions on your sketch.

5. Was there anything special about the value Ax− b from part (b)? If so, explain.
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3 MATLAB practice
1. List of commands in Linear Algebra

Commands Description
eig(A) The eigenvalue if A
[V, L] = eig (A) The eigenvalue (diagonal elements of V) and

the corresponding eigenvectors (columns of L) of A
norm(x,1),norm(x,2),norm(x,’inf’) ‖x‖1, ‖x‖2, ‖x‖∞ of the vector x
trace(A),det(A) Trace and Determinant of A
x=A\b x = A−1b or the solution x to the equation Ax = b
[L,U,P]=lu(A) The LU decomposition of a matrix A, A = LU
[Q,R]=qr(A) The QR factorization of a matrix A, A = QR
[U,S,V]=svd(A) The svd decomposition of a matrix A, A = USV ′

2. Condition number κ(A) of a matrix A. Get a random 10-by-10 matrix A by A=rand(10). The built-in
command to compute the condition number of a matrix A is cond(A). Can you find any relation
(equality, or inequality) between the following numbers?

cond(A)ˆ2, cond(A’*A), cond(A*A)
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