Practice Problems for the final

1. (Projection of a line on a convex set). Let $\Omega=\left\{x \in \mathbb{R}^{2} \mid 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1\right\}$ be the unit square and $x=\binom{0}{0}, g=\binom{1}{2}$, find the projection of the line $x-t g$ on Ω as a function of $t \in \mathbb{R}$.
2. Using the definition of convexity of a function, show the following facts
(a) If h and g are convex, then so are $m(x)=\max (f(x), g(x))$ and $h(x)=f(x)+g(x)$
(b) If f and g are convex and g is non-decreasing, then $h(x)=g(f(x))$ is convex
(c) If $f(x, y)$ is convex in x then $g(x)=\sup _{y \in C} f(x, y)$ is convex
3. Consider the problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } l \leq x \leq u
$$

where $l, u \in \mathbb{R}^{n}$ are two constant vectors with $l_{i} \leq u_{i}$.
(a) Show that the first order (KKT) conditions at x^{*} is equivalent to

$$
x^{*}-P\left(x^{*}-\nabla f\left(x^{*}\right), l, u\right)=0
$$

where $P(x, l, u)$ is the projection of x on the rectangular box $\Omega=\left\{y \mid l_{i} \leq y_{i} \leq u_{i}\right\}$.
(b) This also suggest an iterative scheme $x^{n+1}=P\left(x^{n}-\nabla f\left(x^{n}\right), l, u\right)$. For

$$
f(x)=x_{1}^{2}-x_{1} x_{2}-x_{2}^{2}, \quad l=\binom{0}{0}, \quad u=\binom{1}{1}, \quad x^{0}=\binom{1 / 2}{1 / 2}
$$

Calculate x^{1} and x^{2}.
4. Projections onto planar sets In each of the problems below, you are given a convex set in the plane, and you are asked to find projection of an arbitrary point x_{0} onto the plane. In each case, (i) give sketch of the set, with arrows to show the projection, (ii) give a formula for the projection.
(a) Let S be the unit square.
(b) Let C be the intersection of the unit circle, and the half plane whose boundary is the line through $(0,1)$ and $(1,0)$ and which contains the origin.
5. Norm minimization with linear constraints For each of the following problems, give a sketch of the constraints and the level sets of the objective function. Find the minimizer and the minimum value and indicate them on the sketch.
(a) $\min _{x, y}|x|+|y|$ subject to $y=3 x-2$.
(b) $\min _{x, y} \max (|x|,|y|)$ subject to $y=3 x-2$.
6. Legendre Transform/Conjugate functions The formula for the Legendre transform $f^{*}(y)$ of the function $f(x)$ is given by

$$
f^{*}(y)=\max _{x}(x y-f(x))
$$

(a) Compute the Legendre Transform $f^{*}(y)$ of $f(x)=3 x^{2}+5$.
(b) Compute the Legendre Transform $f^{*}(y)$ of $f(x)=e^{x}+4 x$.
(c) For (b), find the Legendre Transform $f^{* *}(x)$ of $f^{*}(y)$ defined as

$$
f^{* *}(x)=\max _{y}\left(x y-f^{*}(y)\right)
$$

Is is related to $f(x)$?
7. Projection in different norms Let $x_{0}=(4,0)$. Consider the problem

$$
\begin{array}{ll}
\min & f(x)=\left\|x-x_{0}\right\|_{p} \\
\text { subject to } & x \in L=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}=5 x_{1}\right\}
\end{array}
$$

(a) Find the minimizer x_{*} for for $p=1,2, \infty$.
(b) Make a sketch illustrating the point x_{0}, the line L, and the shape (circle, square, and diamond) of the norm about x_{0} which intersects the line.
8. Consider the problem

$$
\begin{array}{ll}
\min & f(x)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2} \\
\text { subject to } & x_{1}+x_{2} \geq 1
\end{array}
$$

(a) Find the minimizer $x(\mu)$ and the estimated Lagrange Multiplier $\lambda(\mu)$ of the logarithmic barrier method.
(b) Find x^{*} and x^{*} by taking the limit $\mu \rightarrow 0$.
9. Consider the following problem

$$
\min f(x), \quad f(x)=\left(x_{1}+1\right)^{2}+\left(x_{2}-1\right)^{2}+\left|x_{1}+x_{2}\right|
$$

(a) Is this problem convex?
(b) The function f is unconstrained, but the term $\left|x_{1}+x_{2}\right|$ is not differentiable. We can get rid of the absolute value by introducing $x_{3}=\left|x_{1}+x_{2}\right|$, and get the equivalent one

$$
\min _{x \in \Omega} \tilde{f}(x)=\left(x_{1}+1\right)^{2}+\left(x_{2}-1\right)^{2}+x_{3}
$$

Write down the linear inequality constraints characterizing the feasible region.
10. Consider the problem $\min _{x \in \mathbb{R}^{2}} f(x)$ where

$$
f(x)=\left(x_{1}+1\right)^{2}+\left(x_{2}-1\right)^{2}+\|x\|_{1}=\left(x_{1}+1\right)^{2}+\left(x_{2}-1\right)^{2}+\left|x_{1}\right|+\left|x_{2}\right|
$$

(a) Introducing $x_{3}=\left|x_{1}\right|, x_{4}=\left|x_{2}\right|$, formulate this problem as a constrained optimization problem with linear inequality constraints (similar to the previous one).
(b) Determine which quadrant the global minimizer $\left(x_{1}, x_{2}\right)$ will be. Use this information to get rid of the absolute value (so that you can take derivatives) and find the global minimizer.

