Practice Problems for the final

- 1. (Projection of a line on a convex set). Let $\Omega = \{x \in \mathbb{R}^2 \mid 0 \le x_1 \le 1, 0 \le x_2 \le 1\}$ be the unit square and $x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, g = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find the projection of the line x tg on Ω as a function of $t \in \mathbb{R}$.
- 2. Using the definition of convexity of a function, show the following facts
 - (a) If h and g are convex, then so are $m(x) = \max(f(x), g(x))$ and h(x) = f(x) + g(x)
 - (b) If f and g are convex and g is non-decreasing, then h(x) = g(f(x)) is convex
 - (c) If f(x,y) is convex in x then $g(x) = \sup_{y \in C} f(x,y)$ is convex
- 3. Consider the problem

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to } l \le x \le u,$$

where $l, u \in \mathbb{R}^n$ are two constant vectors with $l_i \leq u_i$.

(a) Show that the first order (KKT) conditions at x^* is equivalent to

$$x^* - P(x^* - \nabla f(x^*), l, u) = 0,$$

where P(x, l, u) is the projection of x on the rectangular box $\Omega = \{y \mid l_i \leq y_i \leq u_i\}$.

(b) This also suggest an iterative scheme $x^{n+1} = P(x^n - \nabla f(x^n), l, u)$. For

$$f(x) = x_1^2 - x_1 x_2 - x_2^2, \quad l = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad x^0 = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix},$$

Calculate x^1 and x^2 .

- 4. Projections onto planar sets In each of the problems below, you are given a convex set in the plane, and you are asked to find projection of an arbitrary point x_0 onto the plane. In each case, (i) give sketch of the set, with arrows to show the projection, (ii) give a formula for the projection.
 - (a) Let S be the unit square.
 - (b) Let C be the intersection of the unit circle, and the half plane whose boundary is the line through (0,1) and (1,0) and which contains the origin.
- 5. Norm minimization with linear constraints For each of the following problems, give a sketch of the constraints and the level sets of the objective function. Find the minimizer and the minimum value and indicate them on the sketch.
 - (a) $\min_{x,y} |x| + |y|$ subject to y = 3x 2.
 - (b) $\min_{x,y} \max(|x|,|y|)$ subject to y = 3x 2.
- 6. Legendre Transform/Conjugate functions The formula for the Legendre transform $f^*(y)$ of the function f(x) is given by

$$f^*(y) = \max_{x} \left(xy - f(x) \right)$$

- (a) Compute the Legendre Transform $f^*(y)$ of $f(x) = 3x^2 + 5$.
- (b) Compute the Legendre Transform $f^*(y)$ of $f(x) = e^x + 4x$.
- (c) For (b), find the Legendre Transform $f^{**}(x)$ of $f^{*}(y)$ defined as

$$f^{**}(x) = \max_{y} \left(xy - f^*(y) \right)$$

Is is related to f(x)?

7. Projection in different norms Let $x_0 = (4,0)$. Consider the problem

$$\begin{aligned} &\min & &f(x) = \|x - x_0\|_p,\\ &\text{subject to} & &x \in L = \{(x_1, x_2) \mid x_2 = 5x_1\} \end{aligned}$$

- (a) Find the minimizer x_* for for $p = 1, 2, \infty$.
- (b) Make a sketch illustrating the point x_0 , the line L, and the shape (circle, square, and diamond) of the norm about x_0 which intersects the line.
- 8. Consider the problem

min
$$f(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$
 subject to
$$x_1 + x_2 \ge 1.$$

- (a) Find the minimizer $x(\mu)$ and the estimated Lagrange Multiplier $\lambda(\mu)$ of the logarithmic barrier method.
- (b) Find x^* and x^* by taking the limit $\mu \to 0$.
- 9. Consider the following problem

min
$$f(x)$$
, $f(x) = (x_1 + 1)^2 + (x_2 - 1)^2 + |x_1 + x_2|$.

- (a) Is this problem convex?
- (b) The function f is unconstrained, but the term $|x_1 + x_2|$ is not differentiable. We can get rid of the absolute value by introducing $x_3 = |x_1 + x_2|$, and get the equivalent one

$$\min_{x \in \Omega} \tilde{f}(x) = (x_1 + 1)^2 + (x_2 - 1)^2 + x_3.$$

Write down the linear inequality constraints characterizing the feasible region.

10. Consider the problem $\min_{x \in \mathbb{R}^2} f(x)$ where

$$f(x) = (x_1 + 1)^2 + (x_2 - 1)^2 + ||x||_1 = (x_1 + 1)^2 + (x_2 - 1)^2 + |x_1| + |x_2|.$$

- (a) Introducing $x_3 = |x_1|, x_4 = |x_2|$, formulate this problem as a constrained optimization problem with **linear inequality** constraints (similar to the previous one).
- (b) Determine which quadrant the global minimizer (x_1, x_2) will be. Use this information to get rid of the absolute value (so that you can take derivatives) and find the global minimizer.