Continuous Optimization
 Penalty and Barrier

Sections covered in the textbook (2nd edition):

- Chapter 17: 1, 2, 3

Barrier Method

$$
\min _{x \in \Omega} \quad f(x)
$$

where Ω is the feasible region

$$
\Omega=\left\{x \mid c_{i}(x)=0, i \in \mathcal{E}, c_{i}(x) \geq 0, i \in \mathcal{I}\right\}
$$

This is equivalent to

$$
\min f(x)+\chi_{\Omega}(x)
$$

where $\chi_{\Omega}(x)$ is the indicator function,

$$
\chi_{\Omega}(x)= \begin{cases}0, & \text { if } x \in \Omega \\ \infty, & \text { otherwise }\end{cases}
$$

But we have to get alternative formulas for $\chi_{\Omega}(x)$ to make it useful in practice, like the duality theory.

Barrier: Logarithmic and inverse function

$$
\begin{array}{ll}
\min & f(x) \\
\text { subject to } & g_{i}(x) \geq 0, \quad i=1,2, \cdots, m
\end{array}
$$

Introducing the barrier function

$$
\beta_{\mu}(x)=f(x)+\rho \phi(x)
$$

such that $\phi(x) \rightarrow+\infty$ as $g_{i}(x) \rightarrow 0^{+}$, with the corresponding minimizer x_{ρ}^{*}. Then find the limit $\rho \rightarrow 0^{+}$.
Two popular barrier functions: the logarithmic function

$$
\phi(x)=-\sum_{i=1}^{m} \ln g_{i}(x),
$$

and inverse function

$$
\phi(x)=\sum_{i=1}^{m} \frac{1}{g_{i}(x)} .
$$

Barrier methods

Solve the following problem using logarithmic barrier

$$
\begin{array}{ll}
\min & f(x)=x_{1}-2 x_{2} \\
\text { subject to } & 1+x_{1}-x_{2}^{2} \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

Another example

$$
\begin{array}{ll}
\min & f(x)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1}-1 \geq 0 \geq 0 \\
& x_{2}+1 \geq 0
\end{array}
$$

Show that the result converges and we can get an estimate of the Lagrange Multipliers.
Also show that the Hessian matrix is ill-conditioned $\left(\lambda_{\max } / \lambda_{\text {min }}\right.$ is large).

Penalty method

$$
\min _{x} f(x) \quad \text { subject to } \quad c_{i}(x)=0, \quad i \in \mathcal{E}
$$

Equivalent to $\min f(x)+\mu \psi(x)$, such that $\psi(x)=0$ if x is feasible and $\psi(x)>0$ otherwise.

$$
Q(x ; \mu) \stackrel{\text { def }}{=} f(x)+\frac{\mu}{2} \sum_{i \in \mathcal{E}} c_{i}^{2}(x)
$$

For general constrained problems $\min _{x} f(x) \quad$ subject to $\quad c_{i}(x)=0, i \in \mathcal{E}, \quad c_{i}(x) \geq 0, i \in \mathcal{I}$.
the quadratic penalty function is

$$
Q(x ; \mu) \stackrel{\text { def }}{=} f(x)+\frac{\mu}{2} \sum_{i \in \mathcal{E}} c_{i}^{2}(x)+\frac{\mu}{2} \sum_{i \in \mathcal{I}}\left(\left[c_{i}(x)\right]^{-}\right)^{2}
$$

Nonsmooth penalty functions

For general constrained problems
$\min _{x} f(x) \quad$ subject to $\quad c_{i}(x)=0, i \in \mathcal{E}, c_{i}(x) \geq 0, i \in \mathcal{I}$.
the nonsmooth penalty function is

$$
Q(x ; \mu) \stackrel{\text { def }}{=} f(x)+\mu \sum_{i \in \mathcal{E}}\left|c_{i}(x)\right|+\mu \sum_{i \in \mathcal{I}}\left[c_{i}(x)\right]^{-}
$$

Penalty method

$$
\begin{array}{ll}
\min & f(x)=-x_{1} x_{2} \\
\text { subject to } & x_{1}+2 x_{2}-4=0
\end{array}
$$

Define the penalty function

$$
Q(x ; \mu)=-x_{1} x_{2}+\mu\left(x_{1}+2 x_{2}-4\right)^{2}
$$

- Find the minimizer x_{μ}^{*}
- How far $c\left(x_{\mu}^{*}\right)$ away from zero?
- Estimate the Lagrange Multiplier
- Check the condition number of $\nabla^{2} Q\left(x_{\mu}^{*}\right)$

