Continuous Optimization

Penalty and Barrier

Sections covered in the textbook (2nd edition):

Chapter 17: 1, 2, 3

Barrier Method

$$\min_{x \in \Omega} f(x)$$

where Ω is the feasible region

$$\Omega = \{x \mid c_i(x) = 0, i \in \mathcal{E}, \ c_i(x) \ge 0, i \in \mathcal{I}\}$$

This is equivalent to

$$\min f(x) + \chi_{\Omega}(x)$$

where $\chi_{\Omega}(x)$ is the indicator function,

$$\chi_{\Omega}(x) = \begin{cases} 0, & \text{if } x \in \Omega, \\ \infty, & \text{otherwise.} \end{cases}$$

But we have to get alternative formulas for $\chi_{\Omega}(x)$ to make it useful in practice, like the duality theory.

Barrier: Logarithmic and inverse function

min
$$f(x)$$
, subject to $g_i(x) \ge 0$, $i = 1, 2, \dots, m$.

Introducing the barrier function

$$\beta_{\mu}(x) = f(x) + \rho\phi(x)$$

such that $\phi(x) \to +\infty$ as $g_i(x) \to 0^+$, with the corresponding minimizer x_{ρ}^* . Then find the limit $\rho \to 0^+$.

Two popular barrier functions: the logarithmic function

$$\phi(x) = -\sum_{i=1}^m \ln g_i(x),$$

and inverse function

$$\phi(x) = \sum_{i=1}^{m} \frac{1}{g_i(x)}.$$

Barrier methods

Solve the following problem using logarithmic barrier

min
$$f(x) = x_1 - 2x_2,$$
 subject to
$$1 + x_1 - x_2^2 \ge 0,$$

$$x_2 \ge 0.$$

Another example

min
$$f(x) = x_1^2 + x_2^2$$
, subject to $x_1 - 1 \ge 0 \ge 0$, $x_2 + 1 \ge 0$.

Show that the result converges and we can get an estimate of the Lagrange Multipliers.

Also show that the Hessian matrix is ill-conditioned ($\lambda_{\text{max}}/\lambda_{\text{min}}$ is large).

Penalty method

$$\min_{x} f(x)$$
 subject to $c_i(x) = 0$, $i \in \mathcal{E}$.

Equivalent to min $f(x) + \mu \psi(x)$, such that $\psi(x) = 0$ if x is feasible and $\psi(x) > 0$ otherwise.

$$Q(x; \mu) \stackrel{\mathsf{def}}{=} f(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x).$$

For general constrained problems

$$\min_{x} f(x)$$
 subject to $c_i(x) = 0, i \in \mathcal{E}, c_i(x) \ge 0, i \in \mathcal{I}.$

the quadratic penalty function is

$$Q(x; \mu) \stackrel{\text{def}}{=} f(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x) + \frac{\mu}{2} \sum_{i \in \mathcal{I}} ([c_i(x)]^-)^2.$$

Nonsmooth penalty functions

For general constrained problems

$$\min_{x} f(x)$$
 subject to $c_i(x) = 0, \ i \in \mathcal{E}, \ c_i(x) \geq 0, i \in \mathcal{I}.$

the nonsmooth penalty function is

$$Q(x; \mu) \stackrel{\mathsf{def}}{=} f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} [c_i(x)]^-.$$

Penalty method

min
$$f(x) = -x_1x_2$$
,
subject to $x_1 + 2x_2 - 4 = 0$.

Define the penalty function

$$Q(x; \mu) = -x_1x_2 + \mu(x_1 + 2x_2 - 4)^2.$$

- Find the minimizer x_{μ}^*
- ▶ How far $c(x_{\mu}^*)$ away from zero?
- Estimate the Lagrange Multiplier
- ▶ Check the condition number of $abla^2 Q(x_\mu^*)$

