
Continuous Optimization
Unconstrained Optimization (part 2)

Sections covered in the textbook (2nd edition):

I Chapter 2: 1, 2

I Chapter 3: 1, 2, 3, 4

I Chapter 5: 1, 2

I Chapter 6: 1

I Chapter 10: 1, 2, 3



Steepest Decent pk = −∇f (xk)
When f (x) = 1

2
x tAx − btx with A positive definite,

pk = −∇f (xk) = b − Axk = −rk .

φ(α) = f (xk + αpk)

φ′(αk) = 0 =⇒ αk =
ptkpk
ptkApk

=⇒ xk+1 = xk +
ptkpk
ptkApk

pk .
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Steepest decent for f (x) = 1
2x

tAx − btx

xk+1 = xk +
ptkpk
ptkApk

pk , pk = −∇f (xk) = b − Axk .

I f (xk)− f (x∗) =
1

2
(x − x∗)tA(x − xk)t

4
=

1

2
‖x − x∗‖2A

I f (x1) ≥ f (x2) ≥ · · · ≥ f (x∗) ,
I (Convergence Rate) Let the eigenvalues of A be

0 < λ1 ≤ λ2 ≤ · · · ≤ λn, then

‖xk+1 − x∗‖A ≤
λn − λ1
λn − λ1

‖xk − x∗‖A

When the size n of the system is large, usually λn/λ1 is
large and this method converges slowly. /



Motivation for Conjugate Gradient Method
Let the minimizer for f (x) = 1

2
x tAx − btx be x∗. For n

linearly independent vectors p1, p2, · · · , pn, if

x∗ = x0 + α1p1 + · · ·+ αnpn.

On way is to find the component αkpk step by step, such that

xk = xk−1 + αkpk , with αk =
ptkpk
ptkApk

.

For steepest decent, we have pk · pk+1 = 0.
For n = 2, we have p1 ‖ p3 ‖ p5 ‖ · · · , p2 ‖ p4 ‖ · · · , not so
efficient.
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Motivation for Conjugate Gradient Method

The best we can hope is that the directions p1, p2,· · · ,pn are
“orthogonal” to each other. At kth step, we get the
coefficient αk in the expansion

x∗ = x0 + α1p1 + · · ·+ αnpn.

It is better to enforce the conjugate (orthogonal) condition like
pti Apj = 0 instead of pti pj = 0 in the usual sense. In this case,
the coefficient can be written in terms of x∗,x0, pi and A as

αk =

The conjugate gradient method generates the conjugate
vectors pk and αk at the kth step.



Conjugate Gradient Method

Starting with x0, r0 = Ax0 − b, p0 = −r0 (the only choice for
the first step) and

x1 = x0 + α0p0, α0 =

Next r1 = Ax1 − b = αAp0 − p0. We want to get p1 by
modifying r1 such that pt1Ap0 = 0.

p1 = −r1 + β1p0, β1 =

Continuing with similar formula?



Conjugate Gradient Method
The conjugate condition pti Apj = 0(j < i) is satisfied
automatically when at the kthe step, we only require pk+1 is
obtained from rk+1 by with a difference of pk .

Given x0;
Set r0 ← Ax0 − b, p0 ← −r0, k ← 0;
while ‖rk‖ > ε do

αk ← −
r tkpk
ptkApk

;

xk+1 ← xk + αkpk ;
rk+1 ← Axk+1 − b;

βk+1 ←
r tk+1Apk
ptkApk

;

pk+1 ← −rk+1 + βk+1pk ;
k ← k + 1;

end



Conjugate Gradient Method: Properties

I r tk ri = 0 for i = 0, 1, · · · , k − 1

I span{r0, r1, · · · , rk} = span{r0,Ar0, · · · ,Akr0} =
span{p0, p1, · · · , pk}

I ptkApi = 0 for i = 0, 1, · · · , k − 1

I {xk} converges to x∗ at most n steps

I Convergence rate 0 < λ1 ≤ · · ·λn

‖xk+1 − x∗‖A ≤
λn−k − λ1
λn−k + λ1

‖x0 − x∗‖A

and with the condition number κ(A) = λn/λ1

‖xk+1 − x∗‖A ≤
√
κ(A)− 1√
κ(A)− 1

‖x0 − x∗‖A



Comments on Steepest decent and CG

I When A is still nonsingular but not symmetric, we can
still solve the normal equation AtAx = Atb, but the
condition number (can be taken as λn/λ1) is squared,
and the convergence is slower and the accuracy of the
solution may not be enough.

I They can be applied to nonlinear problems f other than
the quadratic functions of the form f̃ (x) = 1

2
x tAx − btx

with
b = −∇f (xk), A = ∇2f (xk).



Newton’s Method

If the approximation xk is close to the minimizer, for
dk = x∗ − xk

f (x∗) = f (xk + dk) ≈ f (xk) + dk · ∇f (xk) +
1

2
d t
k∇2f (xk)dk .

The minimizer d∗k for the quadratic function is

d∗k =

and the approximation at next step is

xk+1 = xk + dk =



Newton’s Method xk+1 = xk + d∗k

d∗k = argmin f (xk) + d · ∇f (xk) +
1

2
d t∇2f (xk)d (1)

Theorem (Convergence Rate for Newton’s Method)
If f ′′ is continuous and invertible near a solution x∗, then
convergence of Newton’s method is Q-superlinear. If, in
addition, f ′′′ is continuous, the convergence is Q-quadratic.

Questions:

I Near a strict minimizer, why does the minimizer in (??) exist?

I What’s the iterative scheme for finding the local maximizers
of a function f ?

I Any potential problem when f ′′ (or ∇2f ) is not invertible near
x∗? Try f (x) = x4 and x1 = 1.

I How fast ‖∇f (xk)‖ decays to zero?



Newton’s Method

Drawbacks

I Converges only when x1 is close enough to x∗, otherwise
diverges violently.

I The divergence is usually related to the fact that ∇2f (xk)
is singular. One way is to modify the Hessian matrix
∇2f (xk) by a small identity matrix to be ∇2f (xk) + τ I .

I Computational intensive when the dimension of the
variable is large

I Is is clear f (xk+1) < f (xk)? The relaxed version may be
more practical:

xk+1 = xk + αkd
∗
k ,

where αk is a scalar constant between 0 and 1 (very often
just a small positive constant say αk = 0.1).



Quasi-Newton Method (for large scale problems)

The direction at each step for Steepest Decent and Newton’s
method

dsd = −∇f (xk), dnewton = −(∇2f (xk))−1∇f (xk)

Suggesting the general scheme
d = −B−1k ∇f (xk) = −Wk∇f (xk) such that B−1k is easier
(faster) to compute then using linear search method to find
the length αk in xk+1 = xk + αkdk .

What kind of properties Bk or Wk should satisfy?

I Bk should be “close ” to ∇2f (xk)

I The function f (xk + αd) should decrease for α small and
positive.



Quasi-Newton Method
Decent direction pk = −B−1k ∇f (xk).
Let

yk = ∇f (xk+1)−∇f (xk), sk = xk+1 − xk = αkpk ,

by Taylor Expansion

yk = ∇2f (ξk)(xk+1 − xk) = ∇2f (ξk)sk .

This suggest the secant equation

Bk+1sk = yk .

The approximation Bk+1 to the Hessian matrix should be
positive definite, or the curvature condition

s tkyk > 0.



Different Quasi-Newton Method

Let Hk = B−1k , we update Hk instead of B−1k , to reduce the
time in computing the inverse of a matrix.
Davidon-Fletcher-Powell (DFP)

Hk+1 = Hk +
sks

t
k

y t
ksk
− Hkyky

t
kHk

y t
kHkyk

.

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Bk+1 = Bk +
yky

t
k

y t
ksk
− Bksks

t
kBk

s tkBksk
.

or

Hk+1 = Hk +

[
1 +

y t
kHkyk
y t
ksk

]
sks

t
k

y t
ksk
− sky

t
kHk + Hkyks

t
k

y t
kHkyk

.



Comparison for Steepest Decent, CG, Newton and

Quasi-Newton

I Required information: Gradient, with/without Hessian

I Different problems: applicable to min and/or max,
quadratic functions or general nonlinear functions

I Different kind of approximation:

I Convergence rate: Q-linear, Q-superlinear, Q-quadratic


