Continuous Optimization
 Unconstrained Optimization (part 2)

Sections covered in the textbook (2nd edition):

- Chapter 2: 1, 2
- Chapter 3: 1, 2, 3, 4
- Chapter 5: 1, 2
- Chapter 6: $\mathbf{1}$
- Chapter 10: 1, 2, 3

Steepest Decent $p_{k}=-\nabla f\left(x_{k}\right)$

When $f(x)=\frac{1}{2} x^{t} A x-b^{t} x$ with A positive definite,

$$
p_{k}=-\nabla f\left(x_{k}\right)=b-A x_{k}=-r_{k}
$$

$$
\begin{gathered}
\phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right) \\
\phi^{\prime}\left(\alpha_{k}\right)=0 \Longrightarrow \alpha_{k}=\frac{p_{k}^{t} p_{k}}{p_{k}^{t} A p_{k}} \Longrightarrow x_{k+1}=x_{k}+\frac{p_{k}^{t} p_{k}}{p_{k}^{t} A p_{k}} p_{k}
\end{gathered}
$$

Steepest decent for $f(x)=\frac{1}{2} x^{t} A x-b^{t} x$

$$
x_{k+1}=x_{k}+\frac{p_{k}^{t} p_{k}}{p_{k}^{t} A p_{k}} p_{k}, \quad p_{k}=-\nabla f\left(x_{k}\right)=b-A x_{k} .
$$

- $f\left(x_{k}\right)-f\left(x^{*}\right)=\frac{1}{2}\left(x-x^{*}\right)^{t} A\left(x-x_{k}\right)^{t} \triangleq \frac{1}{2}\left\|x-x^{*}\right\|_{A}^{2}$
- $f\left(x_{1}\right) \geq f\left(x_{2}\right) \geq \cdots \geq f\left(x^{*}\right)$
- (Convergence Rate) Let the eigenvalues of A be $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$, then

$$
\left\|x_{k+1}-x^{*}\right\|_{A} \leq \frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}-\lambda_{1}}\left\|x_{k}-x^{*}\right\|_{A}
$$

When the size n of the system is large, usually $\lambda_{n} / \lambda_{1}$ is large and this method converges slowly. $\cdot ;$

Motivation for Conjugate Gradient Method

 Let the minimizer for $f(x)=\frac{1}{2} x^{t} A x-b^{t} x$ be x^{*}. For n linearly independent vectors $p_{1}, p_{2}, \cdots, p_{n}$, if$$
x^{*}=x_{0}+\alpha_{1} p_{1}+\cdots+\alpha_{n} p_{n}
$$

On way is to find the component $\alpha_{k} p_{k}$ step by step, such that $x_{k}=x_{k-1}+\alpha_{k} p_{k}$, with $\alpha_{k}=\frac{p_{k}^{t} p_{k}}{p_{k}^{t} A p_{k}}$.
For steepest decent, we have $p_{k} \cdot p_{k+1}=0$.
For $n=2$, we have $p_{1}\left\|p_{3}\right\| p_{5}\left\|\cdots, p_{2}\right\| p_{4} \| \cdots$, not so efficient.

Motivation for Conjugate Gradient Method

The best we can hope is that the directions $p_{1}, p_{2}, \cdots, p_{n}$ are "orthogonal" to each other. At k th step, we get the coefficient α_{k} in the expansion

$$
x^{*}=x_{0}+\alpha_{1} p_{1}+\cdots+\alpha_{n} p_{n}
$$

It is better to enforce the conjugate (orthogonal) condition like $p_{i}^{t} A p_{j}=0$ instead of $p_{i}^{t} p_{j}=0$ in the usual sense. In this case, the coefficient can be written in terms of x^{*}, x_{0}, p_{i} and A as

$$
\alpha_{k}=
$$

The conjugate gradient method generates the conjugate vectors p_{k} and α_{k} at the k th step.

Conjugate Gradient Method

Starting with $x_{0}, r_{0}=A x_{0}-b, p_{0}=-r_{0}$ (the only choice for the first step) and

$$
x_{1}=x_{0}+\alpha_{0} p_{0}, \quad \alpha_{0}=
$$

Next $r_{1}=A x_{1}-b=\alpha A p_{0}-p_{0}$. We want to get p_{1} by modifying r_{1} such that $p_{1}^{t} A p_{0}=0$.

$$
p_{1}=-r_{1}+\beta_{1} p_{0}, \quad \beta_{1}=
$$

Continuing with similar formula?

Conjugate Gradient Method

The conjugate condition $p_{i}^{t} A p_{j}=0(j<i)$ is satisfied automatically when at the k the step, we only require p_{k+1} is obtained from r_{k+1} by with a difference of p_{k}.

Given x_{0};
Set $r_{0} \leftarrow A x_{0}-b, p_{0} \leftarrow-r_{0}, k \leftarrow 0$; while $\left\|r_{k}\right\|>\epsilon$ do

$$
\begin{aligned}
\alpha_{k} & \leftarrow-\frac{r_{k}^{t} p_{k}}{p_{k}^{t} A p_{k}} \\
x_{k+1} & \leftarrow x_{k}+\alpha_{k} p_{k} ; \\
r_{k+1} & \leftarrow A x_{k+1}-b ; \\
\beta_{k+1} & \leftarrow \frac{r_{k+1}^{t} A p_{k}}{p_{k}^{t} A p_{k}} ; \\
p_{k+1} & \leftarrow-r_{k+1}+\beta_{k+1} p_{k} ; \\
k & \leftarrow k+1 ;
\end{aligned}
$$

end

Conjugate Gradient Method: Properties

- $r_{k}^{t} r_{i}=0$ for $i=0,1, \cdots, k-1$
$-\operatorname{span}\left\{r_{0}, r_{1}, \cdots, r_{k}\right\}=\operatorname{span}\left\{r_{0}, A r_{0}, \cdots, A^{k} r_{0}\right\}=$ $\operatorname{span}\left\{p_{0}, p_{1}, \cdots, p_{k}\right\}$
- $p_{k}^{t} A p_{i}=0$ for $i=0,1, \cdots, k-1$
- $\left\{x_{k}\right\}$ converges to x^{*} at most n steps
- Convergence rate $0<\lambda_{1} \leq \cdots \lambda_{n}$

$$
\left\|x_{k+1}-x^{*}\right\|_{A} \leq \frac{\lambda_{n-k}-\lambda_{1}}{\lambda_{n-k}+\lambda_{1}}\left\|x_{0}-x^{*}\right\|_{A}
$$

and with the condition number $\kappa(A)=\lambda_{n} / \lambda_{1}$

$$
\left\|x_{k+1}-x^{*}\right\|_{A} \leq \frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}-1}\left\|x_{0}-x^{*}\right\|_{A}
$$

Comments on Steepest decent and CG

- When A is still nonsingular but not symmetric, we can still solve the normal equation $A^{t} A x=A^{t} b$, but the condition number (can be taken as $\lambda_{n} / \lambda_{1}$) is squared, and the convergence is slower and the accuracy of the solution may not be enough.
- They can be applied to nonlinear problems f other than the quadratic functions of the form $\tilde{f}(x)=\frac{1}{2} x^{t} A x-b^{t} x$ with

$$
b=-\nabla f\left(x_{k}\right), \quad A=\nabla^{2} f\left(x_{k}\right) .
$$

Newton's Method

If the approximation x_{k} is close to the minimizer, for
$d_{k}=x^{*}-x_{k}$

$$
f\left(x^{*}\right)=f\left(x_{k}+d_{k}\right) \approx f\left(x_{k}\right)+d_{k} \cdot \nabla f\left(x_{k}\right)+\frac{1}{2} d_{k}^{t} \nabla^{2} f\left(x_{k}\right) d_{k}
$$

The minimizer d_{k}^{*} for the quadratic function is

$$
d_{k}^{*}=
$$

and the approximation at next step is

$$
x_{k+1}=x_{k}+d_{k}=
$$

Newton's Method $x_{k+1}=x_{k}+d_{k}^{*}$

$$
\begin{equation*}
d_{k}^{*}=\operatorname{argmin} f\left(x_{k}\right)+d \cdot \nabla f\left(x_{k}\right)+\frac{1}{2} d^{t} \nabla^{2} f\left(x_{k}\right) d \tag{1}
\end{equation*}
$$

Theorem (Convergence Rate for Newton's Method) If $f^{\prime \prime}$ is continuous and invertible near a solution x^{*}, then convergence of Newton's method is Q-superlinear. If, in addition, $f^{\prime \prime \prime}$ is continuous, the convergence is Q-quadratic.

Questions:

- Near a strict minimizer, why does the minimizer in (??) exist?
- What's the iterative scheme for finding the local maximizers of a function f ?
- Any potential problem when $f^{\prime \prime}\left(\right.$ or $\left.\nabla^{2} f\right)$ is not invertible near x^{*} ? $\operatorname{Try} f(x)=x^{4}$ and $x_{1}=1$.
- How fast $\left\|\nabla f\left(x_{k}\right)\right\|$ decays to zero?

Newton's Method

Drawbacks

- Converges only when x_{1} is close enough to x^{*}, otherwise diverges violently.
- The divergence is usually related to the fact that $\nabla^{2} f\left(x_{k}\right)$ is singular. One way is to modify the Hessian matrix $\nabla^{2} f\left(x_{k}\right)$ by a small identity matrix to be $\nabla^{2} f\left(x_{k}\right)+\tau l$.
- Computational intensive when the dimension of the variable is large
- Is is clear $f\left(x_{k+1}\right)<f\left(x_{k}\right)$? The relaxed version may be more practical:

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}^{*},
$$

where α_{k} is a scalar constant between 0 and 1 (very often just a small positive constant say $\alpha_{k}=0.1$).

Quasi-Newton Method (for large scale problems)

The direction at each step for Steepest Decent and Newton's method

$$
d_{s d}=-\nabla f\left(x_{k}\right), \quad d_{\text {newton }}=-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)
$$

Suggesting the general scheme $d=-B_{k}^{-1} \nabla f\left(x_{k}\right)=-W_{k} \nabla f\left(x_{k}\right)$ such that B_{k}^{-1} is easier (faster) to compute then using linear search method to find the length α_{k} in $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.

What kind of properties B_{k} or W_{k} should satisfy?

- B_{k} should be "close" to $\nabla^{2} f\left(x_{k}\right)$
- The function $f\left(x_{k}+\alpha d\right)$ should decrease for α small and positive.

Quasi-Newton Method

Decent direction $p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)$.
Let

$$
y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right), \quad s_{k}=x_{k+1}-x_{k}=\alpha_{k} p_{k}
$$

by Taylor Expansion

$$
y_{k}=\nabla^{2} f\left(\xi_{k}\right)\left(x_{k+1}-x_{k}\right)=\nabla^{2} f\left(\xi_{k}\right) s_{k}
$$

This suggest the secant equation

$$
B_{k+1} s_{k}=y_{k}
$$

The approximation B_{k+1} to the Hessian matrix should be positive definite, or the curvature condition

$$
s_{k}^{t} y_{k}>0
$$

Different Quasi-Newton Method

Let $H_{k}=B_{k}^{-1}$, we update H_{k} instead of B_{k}^{-1}, to reduce the time in computing the inverse of a matrix.
Davidon-Fletcher-Powell (DFP)

$$
H_{k+1}=H_{k}+\frac{s_{k} s_{k}^{t}}{y_{k}^{t} s_{k}}-\frac{H_{k} y_{k} y_{k}^{t} H_{k}}{y_{k}^{t} H_{k} y_{k}}
$$

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

$$
B_{k+1}=B_{k}+\frac{y_{k} y_{k}^{t}}{y_{k}^{t} s_{k}}-\frac{B_{k} s_{k} s_{k}^{t} B_{k}}{s_{k}^{t} B_{k} s_{k}}
$$

or

$$
H_{k+1}=H_{k}+\left[1+\frac{y_{k}^{t} H_{k} y_{k}}{y_{k}^{t} s_{k}}\right] \frac{s_{k} s_{k}^{t}}{y_{k}^{t} s_{k}}-\frac{s_{k} y_{k}^{t} H_{k}+H_{k} y_{k} s_{k}^{t}}{y_{k}^{t} H_{k} y_{k}}
$$

Comparison for Steepest Decent, CG, Newton and Quasi-Newton

- Required information: Gradient, with/without Hessian
- Different problems: applicable to min and/or max, quadratic functions or general nonlinear functions
- Different kind of approximation:
- Convergence rate: Q-linear, Q-superlinear, Q-quadratic

