Continuous Optimization
Unconstrained Optimization (part 2)

Sections covered in the textbook (2nd edition):
Chapter 2: 1, 2

Chapter 3: 1,2, 3, 4

Chapter 5: 1, 2

Chapter 6: 1

Chapter 10: 1, 2, 3
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Steepest Decent px = —V 1 (xk)

When f(x) = 1x"Ax — b'x with A positive definite,

Pk = —Vf(Xk) =b— AXk = —rk.

p(a) = f(xk + apx)




Steepest decent for f(x) = 2x"Ax — b'x

t
Xp41 = X + 'L:kpk P, Pk =—VF(xk)=b— Ax.
PrAPK

() — Fx*) = 5 0x— XY A x)* 2 Sl =
(x1) > f(x) >--->f(x*) ©

» (Convergence Rate) Let the eigenvalues of A be
0<)\1§>\2§"'§>\m then

Ap— A1
X —x"a <
[[Xk+1 [a < NN

X — x*||a

When the size n of the system is large, usually \,/\; is
large and this method converges slowly. ®



Motivation for Conjugate Gradient Method

Let the minimizer for f(x) = 1x"Ax — b'x be x*. For n

linearly independent vectors p1, po, - - - , p,, if
X" =Xxp+ a1p1 + -+ APy
On way is to find the component a,py step by step, such that

_ . __ PPk
Xk = Xk—1 + QkPxk, with = PLADL
For steepest decent, we have py - px+1 = 0.
For n— 2, we have py || ps || ps || -+, p2 || pa || -+, not so

efficient.
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Motivation for Conjugate Gradient Method

The best we can hope is that the directions py, p2,---,p, are
“orthogonal” to each other. At kth step, we get the
coefficient «y in the expansion

X" =Xp+ a1pr + -+ APy

It is better to enforce the conjugate (orthogonal) condition like
piAp; = 0 instead of pfp; = 0 in the usual sense. In this case,
the coefficient can be written in terms of x*,xp, p; and A as

O =

The conjugate gradient method generates the conjugate
vectors px and «ay at the kth step.



Conjugate Gradient Method

Starting with xo, ro = Axo — b, po = —ro (the only choice for
the first step) and

X1 = Xp + @opo, Qg =

Next rp = Ax; — b = aApy — pg. We want to get p; by
modifying r; such that pjApy = 0.

p1 = —n + Bipo, B =

Continuing with similar formula?



Conjugate Gradient Method

The conjugate condition p!Ap; = 0(j < i) is satisfied
automatically when at the kthe step, we only require py.1 is
obtained from r,; by with a difference of p.

Given xp;
Set rg < Axo — b, pg < —ry, k < 0;
while ||ri|| > ¢ do

rEpy
= — P
k pLApK’

Xk41 € Xk + QP
eyl <— AXk+1 — b;

rlfﬂAPk.
Brs1 < PLAPK
Pk+1 < —rk+1 + Br+1Px;
k< k+1;

end



Conjugate Gradient Method: Properties

» rirr=0fori=0,1,---  k—1

» span{ry, ri, -, r} =span{ry, Ary, -, Ak} =
span{po, p1," - , Pk}

piApi =0for i=0,1,---  k—1

{xk} converges to x* at most n steps
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Convergencerate 0 < \; < --- A\,

)\n—k - )\1

X1 — x*[[a < WP %0 — x| a
-

and with the condition number x(A) = A,/ )\

k(A) — 1
st = xla < AL e

k(A)—1



Comments on Steepest decent and CG

» When A is still nonsingular but not symmetric, we can
still solve the normal equation A*tAx = Atb, but the
condition number (can be taken as \,/\;) is squared,
and the convergence is slower and the accuracy of the
solution may not be enough.

» They can be applied to nonlinear problems f other than
the quadratic functions of the form f(x) = Ix'Ax — b'x
with

b= —Vf(Xk), A= V2f(xk).



Newton's Method
If the approximation x; is close to the minimizer, for
de = x* — x
f(x*) = f(x + di) = F(x) + dic - VF(xi) + %d,fv2f(xk)dk.
The minimizer dj for the quadratic function is
di =
and the approximation at next step is

Xkt1 = X + die =



Newton's Method xy41 = xx + d},

d; = argmin f(xc) +d - Vf(xc) + %dtvzf(xk)d (1)

Theorem (Convergence Rate for Newton's Method)

If " is continuous and invertible near a solution x*, then
convergence of Newton’s method is Q-superlinear. If, in
addition, " is continuous, the convergence is Q-quadratic.

Questions:
» Near a strict minimizer, why does the minimizer in (?7) exist?

» What's the iterative scheme for finding the local maximizers
of a function 7

» Any potential problem when " (or V2f) is not invertible near
x*? Try f(x) = x* and x = 1.

» How fast ||Vf(xk)|| decays to zero?



Newton's Method

Drawbacks

» Converges only when x; is close enough to x*, otherwise
diverges violently.

» The divergence is usually related to the fact that V2f(x)
is singular. One way is to modify the Hessian matrix
V2f(x«) by a small identity matrix to be V?f(xx) + 71.

» Computational intensive when the dimension of the
variable is large

» Is is clear f(xk11) < f(xx)? The relaxed version may be
more practical:
X1 = Xk + Qpdy,
where « is a scalar constant between 0 and 1 (very often
just a small positive constant say o, = 0.1).



Quasi-Newton Method (for large scale problems)

The direction at each step for Steepest Decent and Newton's
method

dsd - —Vf(Xk), dnewton - _(sz(xk))ilvf(xk)

Suggesting the general scheme

d = —B, 'Vf(x) = —WiVf(xx) such that B, ! is easier
(faster) to compute then using linear search method to find
the Iength Qi in Xk+1 = Xk + Ofkdk.

What kind of properties By or W, should satisfy?
» By should be “close " to V2f(xy)

» The function f(xx + ad) should decrease for o small and
positive.



Quasi-Newton Method
Decent direction py = —B, 'V f(xx).
Let

Yk = VI(xkq1) — VF(Xk), Sk = Xk41 — Xk = QkPks
by Taylor Expansion
Vi = V(&) (X1 — Xi) = V2F(Ek) sk
This suggest the secant equation
Bii15k = yx-

The approximation By to the Hessian matrix should be
positive definite, or the curvature condition

seyk > 0.



Different Quasi-Newton Method

Let H, = Bk’l, we update H, instead of B!, to reduce the

time in computing the inverse of a matrix.
Davidon-Fletcher-Powell (DFP)

SkS;f _ Hk)’kY;fHk
Vi Sk YiHyx

Hiy1 = Hi +

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

}/k}/;f B BkSkS;ka

Bii1 = B + .
k+1 k Vise 5 By

or

tH skst seyiH, + Hiyist
Heo1 = Hi + |:1+)/k k}/k:| k Sk kY Mk kYk k-

Yisk | yisk a YiHkyx



Comparison for Steepest Decent, CG, Newton and
Quasi-Newton

v

Required information: Gradient, with/without Hessian

v

Different problems: applicable to min and/or max,
quadratic functions or general nonlinear functions

v

Different kind of approximation:

v

Convergence rate: Q-linear, Q-superlinear, Q-quadratic



