
Continuous Optimization
Unconstrained Optimization (part 1)

Sections covered in the textbook (2nd edition):

I Chapter 2: 1, 2

I Chapter 3: 1, 2, 3, 4

I Chapter 5: 1, 2

I Chapter 6: 1

I Chapter 10: 1, 2, 3



Existence questions

What’s the problem with the following functions?

1. f (x) = −1/|x |
2. f (x) = e−x

2

3.

f (x) =

{
1, x 6= 0,

0, x = 0.



Existence questions for min
x∈Rn

f (x)

1. f should be bounded below

2. The minimizer should be obtained for some finite x , for
example

(1) lim
|x |→∞

f (x) =∞

or

(2) The set {x : f (x) < c} for some c is bounded.

3. f is low-semicontinuous.

f (x∗) ≤ lim
x→x∗

f (x)



Different types of minimizers
I Global minimizer vs Local minimizer
I Strict minimizer vs nonstrict minimizer
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Usually, we can only find local minimizers. With more
information (like convexity) we can show the minimizer we
found is global.
If we only need the function value at the minimizer, there is no
need to worry about whether it is strict or not.



Optimality conditions of local minimizer x∗ for

smooth functions f

Theorem (Necessary conditions)
if x∗ is optimal, then

I 1st-order necessary condition (NC1): ∇f (x∗) = 0

I 2nd-order necessary condition (NC2): the Hessian
∇2f (x∗) is positive definite

Theorem (Suffient condition (SC2))
if x∗ is such that ∇f (x∗) = 0 and ∇2f (x∗) is posotive
definite, then x∗ is a local minimum.

Therefore, to find the minimizer of a function, we can just find all
the solutions to the system F(x) = ∇f (x) = 0.

Can you write a minimization problem such whose minimizer x∗ is

the same as the solution of the system of equations F(x) = 0?



Uniqueness of the minimizer: Convexity

Theorem
If f is convex, then any local minimizer x∗ is a global
minimizer.

Remarks:

I x∗ may not be a strict minimizer: f (x) = min(|x | − 1, 0)

I f does not need to be a smooth function: f (x) = |x |
I For convex function f , we can generalize the concept of

gradient ∇f (x) to subgradient (a set) ∂f (x) such that

f (y) ≥ f (x) + (p, y − x) for all p ∈ ∂f (x).

Then x∗ is a minimizer if and only if 0 ∈ ∂f (x).

What’s ∂f (x) for f (x) = |x |?



Some Examples of functions with one single

variable

Example 1.
f (x) = x4 + 4x3 + 6x2 + 4x

Example 2.

f (0) = 0, f ′(x) = (x + 1)x2(x − 1)3

Example 3.
f (x) = x + sin(x)

Example 4.

f (x) = |x−x1|+|x−x1|+· · ·+|x−xm|, x1 < x2 < · · · < xm.



Example: Data Fitting
For a set of data (x1, y1), (x2, y2), · · · , (xm, ym), find the
parameter a0 and a1 for the linear fit y = a0 + a1x .

The objective function

f (a0, a1) =
m∑
i=1

(yi − a0 − a1xi)
2

How about fit with quadratic term y = a0 + a1x + a2x2 or
higher order?

What’s the difference compared with fitting the model
y = a0ea1x?



Example: Maximum Likelihood Estimation

Estimate (µ, σ) in the Gaussian distribution based on xi .
The objective function is

L =
m∏
i=1

1√
2πσi

e−
(xi−µ)2

2σ2

Estimate λ in the Poisson distribution based on ti .
The objective function is

L =
m∏
i=1

λe−λti



General features of an algorithm

min
x∈Rn

f (x)

If we can not find the minimizers analytically, we have to use
numerical techniques.

I Successive approximiations x1 → x2 → · · · → x∗

I Either requiring f (x1) ≥ f (x2) ≥ · · · ≥ f (x∗) or
∇f (xk)→ 0.

I Stoping criteria (Is xk optimal?): (i) |f (xk+1)− f (xk)| < ε
or (ii) |∇f (xk)| < ε.

I Different algorithms find different xk+1 from xk :
I Linear Search: Steepest decent, conjugate gradient,

Newton’s method
I Trust Region



General problems for unconstrained optimization

I Multiple local minimizers

I Large scale (many variables)

I Complicated function evaluations



Line Search Method

xk+1 = xk + αkpk

Basic questions: how do we choose the direction pk and the
length αk?
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In general, it is NOT a good idea to choose pk to be aligned
with the coordinate axis ei? We should choose a
problem-dependent pk , like pk = −∇f (xk).



Step length αk

Assuming pk is chosen, then we want to find the (global)
minimizer αk for

φ(α) = f (xk + αpk), α > 0.

global minimizer

local minizer
α

φ(α)

x∗ x2x1 x4x3

The search algorithm should allow step length α large enough
to find the global minimizer, but also small enough to reduce
the oscillations around the minimizer.



Optimal Steplength

α

φ(α)

α1 α3 α4 α5 α6 α7α2

I Locate the intervals with local minimizers

I Find the local minimizers and the global one


