Continuous Optimization

Linear Inequality Constrained Optimization

Sections covered in the textbook (2nd edition):

► Chapter 12 (linear inequality constrained problems)

Suggested exercises in the textbook:

▶ 12.14, 12.15

Linear inequality constraints

min
$$f(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

subject to $x_1 + 2x_2 \ge 2$
 $x_1 - x_2 \ge -1$
 $-x_1 \ge -3$.

- (a) What's the active set, according to the graph?
- (b) Solve the problem subject inequality constraint(s) in the active set, using Lagrange Multiplier.
- (c) If x is close to x^* , but still in the feasible region, how does the objective function change?
- How about the Lagrange Multipliers with the rest *inactive set?*

Linear inequality constraints

The same previous problem, what if we erroneously guessed only the third constraint $-x_1 \ge -3$ was active?

- (i) Find the minimizer \tilde{x}^* under this (wrong) active constraint.
- (ii) Find a feasible direction at \tilde{x}^* along which the objective function is decreasing.
- (iii) Find the Lagrange Multiplier

Repeat with the wrong active constraint $x_1 - x_2 \ge -1$.

Optimality conditions

Original problem

min
$$f(x)$$
 subject to $Ax \ge b$.

If x^* is a local minimizer, take the active constraints $a_i^t x^* = b_i$ or $\hat{A}x^* = b$. Then x^* is a local minimizer of the problem

min
$$f(x)$$
 subject to $\hat{A}x = \hat{b}$.

The **optimality conditions** are exactly the one for the above equality constrained problem.

Optimality conditions

The equivalent (at least for optimality conditions) equality constrained problems

min
$$f(x)$$
 subject to $\hat{A}x = \hat{b}$.

The solutions $x = \bar{x} + Zv$ where Z is a null-space matrix of \hat{A} . Two equivalent **first order necessary conditions**:

$$Z^t \nabla f(x^*) = 0 \implies \nabla f(x^*) = \hat{A}^t \hat{\lambda}^*$$

and the second-order necessary conditions:

$$Z^{t}\nabla^{2}f(x^{*})Z$$
 is nonnegative definite.

The sign of $\hat{\lambda}^*$?

Optimality conditions

If the Lagrange multipliers for the rest of constraints are zeros, then we have *complementary slackness conditions*

$$\lambda_i^*(a_i^t x^* - b_i) = 0$$

Theorem (Necessary condition for linear ineq constr)

If x^* is a local minimizer of f over the set $\{x : Ax \ge b\}$, then for some vector λ^* of Lagrange multipliers,

- $\lambda^* \geq 0$
- $\lambda^{*t}(Ax^*-b)=0$
- ▶ $Z^t \nabla f(x^*) Z$ is nonnegative definite.

The sufficient condition needs a little bit more than $Z^t \nabla f(x^*) Z$ is positive definite, for degenerate constraints.

Example for Sufficient conditions

min
$$f(x) = x_1^3 + x_2^2$$

subject to $-1 \le x_1 \le 0$.

If $a_i^t x^* = b_i$, there may be problem if $\lambda_i^* = 0$ (the complementary slackness conditions are not **strict**).

Combinatorial Complex by selecting active sets

Solve the following problem by selecting different combination of active sets.

min
$$f(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

subject to $x_1 + 2x_2 \ge 2$
 $x_1 - x_2 \ge -1$
 $-x_1 \ge -3$.