Continuous Optimization

Linear Inequality Constrained Optimization

Sections covered in the textbook (2nd edition):

- Chapter 12 (linear inequality constrained problems)

Suggested exercises in the textbook:

- 12.14, 12.15

Linear inequality constraints

min

$$
f(x)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}
$$

subject to

$$
\begin{gathered}
x_{1}+2 x_{2} \geq 2 \\
x_{1}-x_{2} \geq-1 \\
-x_{1} \geq-3 .
\end{gathered}
$$

(a) What's the active set, according to the graph?
(b) Solve the problem subject inequality constraint(s) in the active set, using Lagrange Multiplier.
(c) If x is close to x^{*}, but still in the feasible region, how does the objective function change?
(d) How about the Lagrange Multipliers with the rest inactive set?

Linear inequality constraints

The same previous problem, what if we erroneously guessed only the third constraint $-x_{1} \geq-3$ was active?
(i) Find the minimizer \tilde{x}^{*} under this (wrong) active constraint.
(ii) Find a feasible direction at \tilde{x}^{*} along which the objective function is decreasing.
(iii) Find the Lagrange Multiplier

Repeat with the wrong active constraint $x_{1}-x_{2} \geq-1$.

Optimality conditions

Original problem

$$
\begin{array}{cl}
\min & f(x) \\
\text { subject to } & A x \geq b
\end{array}
$$

If x^{*} is a local minimizer, take the active constraints $a_{i}^{t} x^{*}=b_{i}$ or $\hat{A} x^{*}=b$. Then x^{*} is a local minimizer of the problem

$$
\begin{array}{cl}
\min & f(x) \\
\text { subject to } & \hat{A} x=\hat{b}
\end{array}
$$

The optimality conditions are exactly the one for the above equality constrained problem.

Optimality conditions

The equivalent (at least for optimality conditions) equality constrained problems

$$
\begin{array}{cl}
\min & f(x) \\
\text { subject to } & \hat{A} x=\hat{b}
\end{array}
$$

The solutions $x=\bar{x}+Z v$ where Z is a null-space matrix of \hat{A}. Two equivalent first order necessary conditions:

$$
Z^{t} \nabla f\left(x^{*}\right)=0 \quad \Longrightarrow \quad \nabla f\left(x^{*}\right)=\hat{A}^{t} \hat{\lambda}^{*}
$$

and the second-order necessary conditions:

$$
Z^{t} \nabla^{2} f\left(x^{*}\right) Z \text { is nonnegative definite. }
$$

The sign of $\hat{\lambda}^{*}$?

Optimality conditions

If the Lagrange multipliers for the rest of constraints are zeros, then we have complementary slackness conditions

$$
\lambda_{i}^{*}\left(a_{i}^{t} x^{*}-b_{i}\right)=0
$$

Theorem (Necessary condition for linear ineq constr) If x^{*} is a local minimizer of f over the set $\{x: A x \geq b\}$, then for some vector λ^{*} of Lagrange multipliers,

- $\nabla f\left(x^{*}\right)=A^{T} \lambda^{*}\left(\right.$ or $\left.Z^{t} \nabla f\left(x^{*}\right)=0\right)$
- $\lambda^{*} \geq 0$
- $\lambda^{* t}\left(A x^{*}-b\right)=0$
- $Z^{t} \nabla f\left(x^{*}\right) Z$ is nonnegative definite.

The sufficient condition needs a little bit more than $Z^{t} \nabla f\left(x^{*}\right) Z$ is positive definite, for degenerate constraints.

Example for Sufficient conditions

$$
\begin{array}{cl}
\min & f(x)=x_{1}^{3}+x_{2}^{2} \\
\text { subject to } & -1 \leq x_{1} \leq 0
\end{array}
$$

If $a_{i}^{t} x^{*}=b_{i}$, there may be problem if $\lambda_{i}^{*}=0$ (the complementary slackness conditions are not strict).

Combinatorial Complex by selecting active sets

 Solve the following problem by selecting different combination of active sets.$$
\begin{array}{ll}
\min & f(x)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2} \\
\text { subject to } & x_{1}+2 x_{2} \geq 2 \\
& x_{1}-x_{2} \geq-1 \\
& -x_{1} \geq-3 .
\end{array}
$$

