
Optimality conditions for nonlinear constraints

min f (x)

subject to ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I.

Theorem (First-order necessary (KKT) conditions)
Suppose x∗ is a local solution, f and ci are continuously
differentiable and the LICQ holds at x∗. Then there exist a
Lagrange multiplier λ∗, i ∈ E

⋃
I, such that

(1) ci(x∗) = 0, for all i ∈ E (Feasible condition)

(2) ci(x∗) ≥ 0, for all i ∈ I (Feasible condition)

(3) λ∗i ≥ 0, for all i ∈ I
(4) λ∗i ci(x∗) = 0, for all i ∈ E

⋃
I (Complementarity)

(5) ∇xL(x∗, λ∗) = 0



Optimality conditions for nonlinear constraints
The critical cone

C(x∗, λ∗) = {w ∈ F(x∗)|∇ci(x∗)tw = 0,

∀ i ∈ A(x∗)
⋂
I with λ∗i > 0}

Theorem (Second-order necessary conditions)

wT∇xxL(x∗, λ∗)w ≥ 0, ∀ w ∈ C(x∗, λ∗).

Theorem (Second-order sufficient conditions)
Strict Complementarity +

wT∇xxL(x∗, λ∗)w > 0, ∀ w ∈ C(x∗, λ∗), w 6= 0.

Is this consistent with linear constraints?



Example 1:

min x1 + x2 subject to 2− x2
2 − x2

2 ≥ 0.

Example 2:

min f (x) = x1

subject to (x1 + 1)2 + x2
2 ≥ 1

x2
1 + x2

2 ≤ 2.

What happens if one of the constraint ∇ci(x∗) = 0 (irregular
point)?

min x

subject to x3 ≥ 0.



Counterexample for LICQ

min f (x) = 3x1 + 4x2

subject to (x1 + 1)2 + x2
2 = 1

(x1 − 1)2 + x2
2 = 1

(i) Find the feasible region and the minimizer.

(ii) Can you find λ∗?

(iii) How about one of the constraint is perturbed a little, say
c1 becomes

(x1 + 1)2 + x2
2 = 1 + δ.



Continuous Optimization
Duality

Sections covered in the textbook (2nd edition):

I Chapter 12, Section 8 and 9

Suggested exercises in the textbook:

I 12.22



Lagrange Multipliers and sensitivity

Facts:

(a) Complementarity: For inactive constraints ci(x∗) ≥ 0, the
corresponding Lagrange Multiplier λ∗i = 0.

(b) If the constraint ci(x) ≥ 0 ( or ci(x) = 0) is perturbed to
ci(x) ≥ δ (or ci(x) = δ) then the Lagrange function
evaluated at the optimal x∗δ and λ∗δ has the relation

d

dδ
Lδ(x∗δ , λ

∗
δ)

∣∣∣∣
δ=0

= λ∗i

or
Lδ(x∗δ , λ

∗
δ) = L(x∗, λ∗) + λ∗i δ + O(δ2)

(c) The inequality constraint ci is strongly active if i ∈ A(x∗)
and λ∗i > 0. It is weakly active if i ∈ A(x∗) and λ∗i = 0.



General min-max duality

min
x∈X

max
y∈Y
F(x , y) vs max

y∈Y
min
x∈X
F(x , y)

If both have solution in the sense that

max
y∈Y

min
x∈X
F(x , y) = min

x∈X
F(x , y ∗),

min
x∈X

max
y∈Y
F(x , y) = max

y∈Y
F(x∗, y)

then we have the Weak duality:

max
y∈Y

min
x∈X
F(x , y) ≤ min

x∈X
max
y∈Y
F(x , y)

This implies the saddle point condition:

F(x∗, y) ≤ F(x∗, y ∗) ≤ F(x , y ∗).



General min-max duality

Strong duality: The condition

max
y∈Y

min
x∈X
F(x , y) ≤ min

x∈X
max
y∈Y
F(x , y)

holds if and only if there exists a pair (x∗, y ∗) that satisfies the
saddle point condition for F .

Example (Two-person Zero-sum Game represented as matrix).

B chooses B1 B chooses B2 B chooses B3
A chooses A1 +3 -2 +2
A chooses A2 -1 0 +4
A chooses A3 -4 -3 +1



Lagrange Duality for L(x , λ) = f (x)− λtc(x)
For the problem

min
x∈Rn

f (x) subject to c(x) ≥ 0,

it is equivalent to minx L∗(x) (if the feasible region is not
empty), where

L∗(x) = max
λ≥0

L(x , λ) =

{
f (x), if g(x) ≥ 0,

∞, otherwise.

Define the dual objective function q as

q(λ)
def
= inf

x
L(x , λ)

The dual problem:

max
λ∈Rm

q(λ) subject to λ ≥ 0.



Lagrange Duality for L(x , λ) = f (x)− λtc(x)

Example: Find the dual problem for

min
x∈R2

1

2
(x2

1 + x2
2 ) subject to x1 − 1 ≥ 0.

Theorem
The function q is concave.

Theorem (Weak duality)
If x̄ is feasible and any λ̄ ≥ 0, we have q(λ̄) ≤ f (x̄).



Duality and optimality conditions
If f and −ci are convex and differentiable at x∗, (x∗, λ∗)
satisfies the first order necessary (KKT) condition.
(a) λ∗ is also a solution of the dual problem

max
λ∈Rm

q(λ) subject to λ ≥ 0.

(b) If LICQ holds at x∗ and λ̂ solves the dual problem with
the infimum of L(x , λ̂) is attained at x̂ and L(x , λ̂) is
strictly convex in x . Then x̂ = x∗ and f (x∗) = L(x̂ , λ̂).

(c) (Wolfe duality) If (x∗, λ∗) is a solution of the primary
problem

min
x∈Rn

f (x) subject to c(x) ≥ 0,

then it solves

max
x ,λ

L(x , λ)

subject to ∇xL(x , λ) = 0, λ ≥ 0.



Other general examples

Linear Programming:

min c tx , subject to Ax − b ≥ 0.

Convex Quadratic programming

min
1

2
x tQx + c tx subject toAx − b ≥ 0,

where Q is positive definite.


