Optimality conditions for nonlinear constraints

$$
\begin{array}{ll}
\min & f(x) \\
\text { subject to } & c_{i}(x)=0, \quad i \in \mathcal{E}, \\
& c_{i}(x) \geq 0, \quad i \in \mathcal{I} .
\end{array}
$$

Theorem (First-order necessary (KKT) conditions)
Suppose x^{*} is a local solution, f and c_{i} are continuously differentiable and the LICQ holds at x^{*}. Then there exist a Lagrange multiplier $\lambda^{*}, i \in \mathcal{E} \cup \mathcal{I}$, such that
(1) $c_{i}\left(x^{*}\right)=0, \quad$ for all $i \in \mathcal{E} \quad$ (Feasible condition)
(2) $c_{i}\left(x^{*}\right) \geq 0, \quad$ for all $i \in \mathcal{I} \quad$ (Feasible condition)
(3) $\lambda_{i}^{*} \geq 0, \quad$ for all $i \in \mathcal{I}$
(4) $\lambda_{i}^{*} c_{i}\left(x^{*}\right)=0$, for all $i \in \mathcal{E} \bigcup \mathcal{I} \quad$ (Complementarity)
(5) $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$

Optimality conditions for nonlinear constraints

 The critical cone$$
\begin{aligned}
\mathcal{C}\left(x^{*}, \lambda^{*}\right)=\left\{w \in \mathcal{F}\left(x^{*}\right) \mid\right. & \nabla c_{i}\left(x^{*}\right)^{t} w=0 \\
& \left.\forall i \in \mathcal{A}\left(x^{*}\right) \bigcap \mathcal{I} \text { with } \lambda_{i}^{*}>0\right\}
\end{aligned}
$$

Theorem (Second-order necessary conditions)

$$
w^{T} \nabla_{x x} L\left(x^{*}, \lambda^{*}\right) w \geq 0, \quad \forall w \in \mathcal{C}\left(x^{*}, \lambda^{*}\right) .
$$

Theorem (Second-order sufficient conditions)
Strict Complementarity +

$$
w^{\top} \nabla_{x x} L\left(x^{*}, \lambda^{*}\right) w>0, \quad \forall w \in \mathcal{C}\left(x^{*}, \lambda^{*}\right), w \neq 0 .
$$

Is this consistent with linear constraints?

Example 1:

$$
\min x_{1}+x_{2} \quad \text { subject to } 2-x_{2}^{2}-x_{2}^{2} \geq 0
$$

Example 2:

$$
\begin{array}{ll}
\min & f(x)=x_{1} \\
\text { subject to } & \left(x_{1}+1\right)^{2}+x_{2}^{2} \geq 1 \\
& x_{1}^{2}+x_{2}^{2} \leq 2
\end{array}
$$

What happens if one of the constraint $\nabla c_{i}\left(x^{*}\right)=0$ (irregular point)?

$$
\begin{array}{ll}
\min & x \\
\text { subject to } & x^{3} \geq 0
\end{array}
$$

Counterexample for LICQ

$$
\begin{array}{ll}
\min & f(x)=3 x_{1}+4 x_{2} \\
\text { subject to } & \left(x_{1}+1\right)^{2}+x_{2}^{2}=1 \\
& \left(x_{1}-1\right)^{2}+x_{2}^{2}=1
\end{array}
$$

(i) Find the feasible region and the minimizer.
(ii) Can you find λ^{*} ?
(iii) How about one of the constraint is perturbed a little, say c_{1} becomes

$$
\left(x_{1}+1\right)^{2}+x_{2}^{2}=1+\delta
$$

Continuous Optimization Duality

Sections covered in the textbook (2nd edition):

- Chapter 12, Section 8 and 9

Suggested exercises in the textbook:

- 12.22

Lagrange Multipliers and sensitivity

Facts:
(a) Complementarity: For inactive constraints $c_{i}\left(x^{*}\right) \geq 0$, the corresponding Lagrange Multiplier $\lambda_{i}^{*}=0$.
(b) If the constraint $c_{i}(x) \geq 0$ (or $c_{i}(x)=0$) is perturbed to $c_{i}(x) \geq \delta\left(\right.$ or $\left.c_{i}(x)=\delta\right)$ then the Lagrange function evaluated at the optimal x_{δ}^{*} and λ_{δ}^{*} has the relation

$$
\left.\frac{d}{d \delta} L_{\delta}\left(x_{\delta}^{*}, \lambda_{\delta}^{*}\right)\right|_{\delta=0}=\lambda_{i}^{*}
$$

or

$$
L_{\delta}\left(x_{\delta}^{*}, \lambda_{\delta}^{*}\right)=L\left(x^{*}, \lambda^{*}\right)+\lambda_{i}^{*} \delta+O\left(\delta^{2}\right)
$$

(c) The inequality constraint c_{i} is strongly active if $i \in \mathcal{A}\left(x^{*}\right)$ and $\lambda_{i}^{*}>0$. It is weakly active if $i \in \mathcal{A}\left(x^{*}\right)$ and $\lambda_{i}^{*}=0$.

General min-max duality

$$
\min _{x \in X} \max _{y \in Y} \mathcal{F}(x, y) \quad \text { vs } \quad \max _{y \in Y} \min _{x \in X} \mathcal{F}(x, y)
$$

If both have solution in the sense that

$$
\begin{aligned}
& \max _{y \in Y} \min _{x \in X} \mathcal{F}(x, y)=\min _{x \in X} \mathcal{F}\left(x, y^{*}\right), \\
& \min _{x \in X} \max _{y \in Y} \mathcal{F}(x, y)=\max _{y \in Y} \mathcal{F}\left(x^{*}, y\right)
\end{aligned}
$$

then we have the Weak duality:

$$
\max _{y \in Y} \min _{x \in X} \mathcal{F}(x, y) \leq \min _{x \in X} \max _{y \in Y} \mathcal{F}(x, y)
$$

This implies the saddle point condition:

$$
\mathcal{F}\left(x^{*}, y\right) \leq \mathcal{F}\left(x^{*}, y^{*}\right) \leq \mathcal{F}\left(x, y^{*}\right) .
$$

General min-max duality

Strong duality: The condition

$$
\max _{y \in Y} \min _{x \in X} \mathcal{F}(x, y) \leq \min _{x \in X} \max _{y \in Y} \mathcal{F}(x, y)
$$

holds if and only if there exists a pair $\left(x^{*}, y^{*}\right)$ that satisfies the saddle point condition for \mathcal{F}.

Example (Two-person Zero-sum Game represented as matrix).

	B chooses B1	B chooses B2	B chooses B3
A chooses A1	+3	-2	+2
A chooses A2	-1	0	+4
A chooses A3	-4	-3	+1

Lagrange Duality for $L(x, \lambda)=f(x)-\lambda^{t} c(x)$

For the problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } c(x) \geq 0
$$

it is equivalent to $\min _{x} L^{*}(x)$ (if the feasible region is not empty), where

$$
L^{*}(x)=\max _{\lambda \geq 0} L(x, \lambda)= \begin{cases}f(x), & \text { if } g(x) \geq 0 \\ \infty, & \text { otherwise }\end{cases}
$$

Define the dual objective function q as

$$
q(\lambda) \stackrel{\text { def }}{=} \inf _{x} L(x, \lambda)
$$

The dual problem:

$$
\max _{\lambda \in \mathbb{R}^{m}} q(\lambda) \quad \text { subject to } \lambda \geq 0
$$

Lagrange Duality for $L(x, \lambda)=f(x)-\lambda^{t} c(x)$

Example: Find the dual problem for

$$
\min _{x \in \mathbb{R}^{2}} \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \quad \text { subject to } x_{1}-1 \geq 0 .
$$

Theorem
The function q is concave.
Theorem (Weak duality)
If \bar{x} is feasible and any $\bar{\lambda} \geq 0$, we have $q(\bar{\lambda}) \leq f(\bar{x})$.

Duality and optimality conditions

If f and $-c_{i}$ are convex and differentiable at $x^{*},\left(x^{*}, \lambda^{*}\right)$ satisfies the first order necessary (KKT) condition.
(a) λ^{*} is also a solution of the dual problem

$$
\max _{\lambda \in \mathbb{R}^{m}} q(\lambda) \quad \text { subject to } \lambda \geq 0
$$

(b) If LICQ holds at x^{*} and $\hat{\lambda}$ solves the dual problem with the infimum of $L(x, \hat{\lambda})$ is attained at \hat{x} and $L(x, \hat{\lambda})$ is strictly convex in x. Then $\hat{x}=x^{*}$ and $f\left(x^{*}\right)=L(\hat{x}, \hat{\lambda})$.
(c) (Wolfe duality) If $\left(x^{*}, \lambda^{*}\right)$ is a solution of the primary problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } c(x) \geq 0
$$

then it solves

$$
\begin{array}{ll}
\max _{x, \lambda} & L(x, \lambda) \\
\text { subject to } & \nabla_{x} L(x, \lambda)=0, \lambda \geq 0
\end{array}
$$

Other general examples

Linear Programming:

$$
\min c^{t} x, \quad \text { subject to } A x-b \geq 0
$$

Convex Quadratic programming

$$
\min \frac{1}{2} x^{t} Q x+c^{t} x \quad \text { subject to } A x-b \geq 0
$$

where Q is positive definite.

