Optimality conditions for nonlinear constraints

min
$$f(x)$$

subject to $c_i(x) = 0, \quad i \in \mathcal{E},$
 $c_i(x) \geq 0, \quad i \in \mathcal{I}.$

Theorem (First-order necessary (KKT) conditions)

Suppose x^* is a local solution, f and c_i are continuously differentiable and the **LICQ** holds at x^* . Then there exist a Lagrange multiplier λ^* , $i \in \mathcal{E} \bigcup \mathcal{I}$, such that

- (1) $c_i(x^*) = 0$, for all $i \in \mathcal{E}$ (Feasible condition)
- (2) $c_i(x^*) \ge 0$, for all $i \in \mathcal{I}$ (Feasible condition)
- (3) $\lambda_i^* \geq 0$, for all $i \in \mathcal{I}$
- (4) $\lambda_i^* c_i(x^*) = 0$, for all $i \in \mathcal{E} \bigcup \mathcal{I}$ (Complementarity)
- (5) $\nabla_x L(x^*, \lambda^*) = 0$

Optimality conditions for nonlinear constraints

The critical cone

$$\begin{split} \mathcal{C}(x^*,\lambda^*) &= \{ w \in \mathcal{F}(x^*) | \nabla c_i(x^*)^t w = 0, \\ \forall \ i \in \mathcal{A}(x^*) \bigcap \mathcal{I} \ \text{with} \ \lambda_i^* > 0 \} \end{split}$$

Theorem (Second-order necessary conditions)

$$w^T \nabla_{xx} L(x^*, \lambda^*) w \ge 0, \quad \forall \ w \in \mathcal{C}(x^*, \lambda^*).$$

Theorem (Second-order sufficient conditions)

Strict Complementarity +

$$w^T \nabla_{xx} L(x^*, \lambda^*) w > 0, \quad \forall \ w \in \mathcal{C}(x^*, \lambda^*), \ w \neq 0.$$

Is this consistent with linear constraints?

Example 1:

min
$$x_1 + x_2$$
 subject to $2 - x_2^2 - x_2^2 \ge 0$.

Example 2:

min
$$f(x) = x_1$$
 subject to
$$(x_1+1)^2 + x_2^2 \ge 1$$

$$x_1^2 + x_2^2 \le 2.$$

What happens if one of the constraint $\nabla c_i(x^*) = 0$ (*irregular point*)?

min
$$x$$
 subject to $x^3 \ge 0$.

Counterexample for LICQ

min
$$f(x) = 3x_1 + 4x_2$$

subject to $(x_1 + 1)^2 + x_2^2 = 1$
 $(x_1 - 1)^2 + x_2^2 = 1$

- (i) Find the feasible region and the minimizer.
- (ii) Can you find λ^* ?
- (iii) How about one of the constraint is perturbed a little, say c_1 becomes

$$(x_1+1)^2+x_2^2=1+\delta.$$

Continuous Optimization Duality

Sections covered in the textbook (2nd edition):

► Chapter 12, Section 8 and 9

Suggested exercises in the textbook:

▶ 12.22

Lagrange Multipliers and sensitivity

Facts:

- (a) Complementarity: For inactive constraints $c_i(x^*) \ge 0$, the corresponding Lagrange Multiplier $\lambda_i^* = 0$.
- (b) If the constraint $c_i(x) \geq 0$ (or $c_i(x) = 0$) is perturbed to $c_i(x) \geq \delta$ (or $c_i(x) = \delta$) then the Lagrange function evaluated at the optimal x^*_δ and λ^*_δ has the relation

$$\left. \frac{d}{d\delta} L_{\delta}(\mathsf{x}_{\delta}^*, \lambda_{\delta}^*) \right|_{\delta=0} = \lambda_i^*$$

or

$$L_{\delta}(x_{\delta}^*, \lambda_{\delta}^*) = L(x^*, \lambda^*) + \lambda_{i}^* \delta + O(\delta^2)$$

(c) The inequality constraint c_i is strongly active if $i \in \mathcal{A}(x^*)$ and $\lambda_i^* > 0$. It is weakly active if $i \in \mathcal{A}(x^*)$ and $\lambda_i^* = 0$.

General min-max duality

$$\min_{x \in X} \max_{y \in Y} \mathcal{F}(x, y) \qquad \text{vs} \qquad \max_{y \in Y} \min_{x \in X} \mathcal{F}(x, y)$$

If both have solution in the sense that

$$\max_{y \in Y} \min_{x \in X} \mathcal{F}(x, y) = \min_{x \in X} \mathcal{F}(x, y^*),$$

$$\min_{x \in X} \max_{y \in Y} \mathcal{F}(x, y) = \max_{y \in Y} \mathcal{F}(x^*, y)$$

then we have the **Weak duality**:

$$\max_{y \in Y} \min_{x \in X} \mathcal{F}(x, y) \le \min_{x \in X} \max_{y \in Y} \mathcal{F}(x, y)$$

This implies the saddle point condition:

$$\mathcal{F}(x^*, y) \leq \mathcal{F}(x^*, y^*) \leq \mathcal{F}(x, y^*).$$

General min-max duality

Strong duality: The condition

$$\max_{y \in Y} \min_{x \in X} \mathcal{F}(x, y) \le \min_{x \in X} \max_{y \in Y} \mathcal{F}(x, y)$$

holds if and only if there exists a pair (x^*, y^*) that satisfies the saddle point condition for \mathcal{F} .

Example (Two-person Zero-sum Game represented as matrix).

	B chooses B1	B chooses B2	B chooses B3
A chooses A1	+3	-2	+2
A chooses A2	-1	0	+4
A chooses A3	-4	-3	+1

Lagrange Duality for $L(x, \lambda) = f(x) - \lambda^t c(x)$

For the problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $c(x) \ge 0$,

it is equivalent to $\min_{x} L^{*}(x)$ (if the feasible region is not empty), where

$$L^*(x) = \max_{\lambda \geq 0} L(x, \lambda) = \begin{cases} f(x), & \text{if } g(x) \geq 0, \\ \infty, & \text{otherwise.} \end{cases}$$

Define the **dual objective function** q as

$$q(\lambda) \stackrel{\text{def}}{=} \inf_{x} L(x,\lambda)$$

The dual problem:

$$\max_{\lambda \in \mathbb{P}_m} q(\lambda)$$
 subject to $\lambda \geq 0$.

Lagrange Duality for $L(x, \lambda) = f(x) - \lambda^t c(x)$

Example: Find the dual problem for

$$\min_{\mathbf{x} \in \mathbb{R}^2} rac{1}{2} (x_1^2 + x_2^2) \qquad ext{subject to } x_1 - 1 \geq 0.$$

Theorem

The function q is concave.

Theorem (Weak duality)

If \bar{x} is feasible and any $\bar{\lambda} \geq 0$, we have $q(\bar{\lambda}) \leq f(\bar{x})$.

Duality and optimality conditions

If f and $-c_i$ are convex and differentiable at x^* , (x^*, λ^*) satisfies the first order necessary (KKT) condition.

(a) λ^* is also a solution of the dual problem

$$\max_{\lambda \in \mathbb{R}^m} q(\lambda)$$
 subject to $\lambda \geq 0$.

- (b) If LICQ holds at x^* and $\hat{\lambda}$ solves the dual problem with the infimum of $L(x,\hat{\lambda})$ is attained at \hat{x} and $L(x,\hat{\lambda})$ is strictly convex in x. Then $\hat{x}=x^*$ and $f(x^*)=L(\hat{x},\hat{\lambda})$.
- (c) (Wolfe duality) If (x^*, λ^*) is a solution of the primary problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $c(x) \ge 0$,

then it solves

$$\max_{x,\lambda} \qquad L(x,\lambda)$$

subject to
$$\nabla_x L(x,\lambda) = 0, \lambda > 0.$$

Other general examples

Linear Programming:

$$\min c^t x$$
, subject to $Ax - b \ge 0$.

Convex Quadratic programming

$$\min \frac{1}{2} x^t Q x + c^t x$$
 subject to $Ax - b \ge 0$,

where Q is positive definite.