Optimality conditions for nonlinear constraints

min f(x)
subject to ¢i(x) =0, i€,
ci(x) >0, ieZ.

Theorem (First-order necessary (KKT) conditions)

Suppose x* is a local solution, f and c; are continuously
differentiable and the LICQ holds at x*. Then there exist a
Lagrange multiplier \*, i € £\ JZ, such that

(1) ci(x*)=0, forallic& (Feasible condition)

(2) ci(x*) > for all i € T (Feasible condition)

(3) Ar >0, fora//iEI

(4) Nci(x*)=0, forallicE\JZ (Complementarity)
(5) Vil(x*,A*)=0



Optimality conditions for nonlinear constraints
The critical cone

C(x*, \*) ={w € F(x*)|Vc(x*)'w=0,
Vi€ A(x*)[ )T with A} > 0}

Theorem (Second-order necessary conditions)
WiV l(x*,\)w >0, ¥V weC(x*,\).

Theorem (Second-order sufficient conditions)
Strict Complementarity +

wT Vo L(x*, A)w > 0, VweC(x,\Y), w#0.

Is this consistent with linear constraints?



Example 1:

min x; + X2 subject to 2 — x5 — x5 > 0.
Example 2:
min f(x)=x
subject to (xx+1)2+x3>1
X2+ x2 < 2.

What happens if one of the constraint V¢;(x*) = 0 (irregular
point)?

min X

subject to x> >0.



Counterexample for LICQ

min f(x) =3x1 + 4x
subject to (a+1P+x=1
(-1 +x =1

(i) Find the feasible region and the minimizer.
(i) Can you find A\*?
(iii) How about one of the constraint is perturbed a little, say

¢1 becomes
(i +12+x2=1+9.



Continuous Optimization
Duality

Sections covered in the textbook (2nd edition):
» Chapter 12, Section 8 and 9

Suggested exercises in the textbook:
» 12.22



Lagrange Multipliers and sensitivity

Facts:

(a) Complementarity: For inactive constraints ¢;(x*) > 0, the
corresponding Lagrange Multiplier A7 = 0.

(b) If the constraint ¢;(x) > 0 (or ¢;(x) = 0) is perturbed to
ci(x) > 9 (or ci(x) = 9) then the Lagrange function
evaluated at the optimal xj and A} has the relation

d * * _ *
%Lé(X(s: A5) o =\

or
Ls(xt, AD) = L(x*, \*) + A6 + 0(6?)

(c) The inequality constraint ¢; is strongly active if i € A(x*)
and \f > 0. It is weakly active if i € A(x*) and Af = 0.



General min-max duality

min max F(x,y) Vs max min F(x,y)

If both have solution in the sense that

[ ‘F ? = [ ‘F ? *?
TE o) = mip Fle )

inmax F(x, y) = max F(x",
iy mas Fx.y) = s Fy)

then we have the Weak duality:

_ .
T T FUoy) S gy Al y)

This implies the saddle point condition:

F(x*y) < F(x*,y") < F(x,y").



General min-max duality

Strong duality: The condition

max min F(x, y) < min max F(x, y)

yeY xeX

xeX yeY

holds if and only if there exists a pair (x*, y*) that satisfies the
saddle point condition for F.

Example (Two-person Zero-sum Game represented as matrix).

B chooses B1

B chooses B2

B chooses B3

A chooses Al +3 -2 +2
A chooses A2 -1 0 +4
A chooses A3 -4 -3 +1




Lagrange Duality for L(x, \) = f(x) — Afc(x)

For the problem

m]iRn f(x) subject to ¢(x) > 0,
x€R"

it is equivalent to min, L*(x) (if the feasible region is not
empty), where

L*(x) = max L(x,\) =

A>0

{f(x), if g(x) >0,

0, otherwise.

Define the dual objective function g as

def

q(A) = inf L(x, \)
The dual problem:

: > 0.
max qa() subject to A > 0



Lagrange Duality for L(x, \) = f(x) — Afc(x)

Example: Find the dual problem for

1
min ~(x{ +x3)  subject to x; — 1 > 0.
x€R? 2

Theorem
The function q is concave.

Theorem (Weak duality)
If % is feasible and any X > 0, we have g(\) < f(X).



Duality and optimality conditions
If f and —c; are convex and differentiable at x*, (x*, \*)
satisfies the first order necessary (KKT) condition.
(a) A*is also a solution of the dual problem

. >0
max qa(\) subject to A > 0

(b) If LICQ holds at x* and ) solves the dual problem with
the infimum of L(x, \) is attained at X and L(x, \) is
strictly convex in x. Then & = x* and f(x*) = L(&, }).

(c) (Wolfe duality) If (x*, \*) is a solution of the primary
problem

min f(x) subject to ¢(x) > 0,
x€ER"
then it solves

max L(x, )

subject to  V,L(x,\)=0,A>0.



Other general examples

Linear Programming:

min c'x, subject to Ax — b > 0.

Convex Quadratic programming
0 1 t t -
min X @x + c'x subject toAx — b > 0,

where @ is positive definite.



