
Sufficient condition for linear ineq constraint I
We need positive definite instead of nonnegative definite (or

positive semidefinite) as that for unconstrained or linear equality

constrained problems; the extra condition here is strict

complementarity ( or non-degeneracy) at the point.

Theorem (Sufficient Condition 1)
If x∗ satisfies

• Ax∗ ≥ b

• ∇f (x∗) = Atλ∗

• λ∗ ≥ 0

• Strict complementarity holds

• Z t∇2f (x∗)Z is positive definite,

then x∗ is a strict local minimizer for the problem

min f (x) subject to Ax ≥ b.



Sufficient condition for linear ineq constraint II
Alternatively we can choose Z differently by avoiding those
degenerate constraints.

Theorem (Sufficient Condition 1)
Let Â+ be the submatrix of Â corresponding to the
non-degenerate active constraints at x∗ (those constraints
whose Lagrange Multiplier are positive). Let Z+ be a basis
matrix for the null space of Â+. If x∗ satisfies

• Ax∗ ≥ b

• ∇f (x∗) = Atλ∗

• λ∗ ≥ 0

• Z t
+∇2f (x∗)Z+ is positive definite,

then x∗ is a strict local minimizer for the problem

min f (x) subject to Ax ≥ b.



Sufficient condition for linear ineq constraint

Show the problem

min f (x) = x3
1 + x2

2

subject to − 1 ≤ x1 ≤ 0.

does not satisfy the sufficient condition at (0, 0).

Solve the following problem:

min f (x) = x3
1 − x3

2 − 2x2
1 − x1 + x2

subject to − x1 − 2x2 ≥ −2,

x1 ≥ 0,

x2 ≥ 0.



Modification with the presence of equality
Solve the previous with the first one with equality in two ways:

min f (x) = x3
1 − x3

2 − 2x2
1 − x1 + x2

subject to − x1 − 2x2 = −2,

x1 ≥ 0,

x2 ≥ 0.

min f (x) = x3
1 − x3

2 − 2x2
1 − x1 + x2

subject to x1 + 2x2 = 2,

x1 ≥ 0,

x2 ≥ 0.



Continuous Optimization
Nonlinear Constrained Optimization

Sections covered in the textbook (2nd edition):

I Chapter 12 (Nonlinear constrained problems)

Suggested exercises in the textbook:

I 12.11, 12.13, 12.15, 12.18, 12.19, 12.21



Nonlinear Equality Constraints

min f (x) = x1 + x2 s.t. c(x) = x2
1 + x2

2 − 2 = 0.

x1

x2

∇f

∇f

∇f

∇c1
∇c1

∇c1∇c1

∇f

At the minimizer x∗, there is no (”feasible”) direction d s.t.
d t∇c(x∗) = 0 and d t∇f (x∗) < 0 =⇒ ∇f (x∗) = λ∇c(x∗).



Nonlinear Inequality constraint

min f (x) = x1 + x2 s.t. c(x) = 2− x2
1 − x2

2 ≥ 0.
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∇f

∇f
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∇c1∇c1

∇f

What’s the difference for the two cases: c(x∗) < 0 and
c(x∗) = 0? Any modification to the condition
∇f (x∗) = λ∇c(x∗)?

How about with the constraint c(x) = x2
1 + x2

2 − 2 ≤ 2?



More inequality constraints

min f (x) = x1 + x2

s.t. c1(x) = 2− x2
1 − x2

2 ≥ 0

c2(x) = x2 ≥ 0.

∇f

∇c1

∇c2

∇c1

∇c1

∇c2

∇f

∇f

At the minimizer x∗,

∇f (x∗) = λ∗1∇c1(x∗) + λ∗1∇c1(x∗), λ∗i ci(x∗) = 0, i = 1, 2.

Not true for any other points in the feasible region.



Tangent cone and Constraint qualifications

The vector d is a tangent (or tangent vector) to Ω at a
point x if there are a feasible sequence {zk} approaching x
and a sequence of positive scalars {tk} with tk → 0 such that

lim
k→∞

zk − x

tk
= d

The set of all tangents to Ω at x∗ is called the tangent cone
and is denoted by TΩ(x∗).

The set of linearized feasible direction F(x) at a feasible
point x

F(x) =

{
d | d t∇ci(x) = 0, for all i ∈ E

d t∇ci(x) ≥ 0, for all i ∈ A(x)
⋂ I

}
These concepts are introduced to investigate the behavior of f near x∗.



Approaching non-optimal point

min f (x) = x1 + x2 s.t. c(x) = x2
1 + x2

2 − 2 = 0.

zk

d

−∇f

∇c

Find TΩ(x) and F(x). How about the constraint becomes the
equivalent one c(x) = (x2

1 + x2
2 − 2)2 = 0?

The point x = (−
√

2, 0) is not optimal because there exists a
feasible sequence {zk} such that f (zk) < f (x).



Approaching non-optimal point

min f (x) = x1 + x2 s.t. c(x) = 2− x2
1 − x2

2 ≥ 0.

zk

d

−∇f

∇c

What’s TΩ(x) and F(x) at x = (−
√

2, 0)?

Constraint qualifications: The geometry of the feasible
region is well described by the algebraic quantities by ci , for
example no constraint like x3

1 ≥ 0.



LICQ
For the constraints

c1(x) = 1− x2
1 − (x2 − 1)2 ≥ 0, c2(x) = −x2 ≥ 0,

check that TΩ(x) 6= F(x) at x = (0, 0).

c1(x) ≥ 0

c2(x) ≥ 0

Linear Independence constraint qualification (LICQ)
holds at a point x if the set of active constraint gradients
{∇ci(x), i ∈ A(x)} is linearly independent.


