Sufficient condition for linear ineq constraint I

We need **positive definite** instead of nonnegative definite (or positive semidefinite) as that for unconstrained or linear equality constrained problems; the extra condition here is **strict complementarity** (or non-degeneracy) at the point.

Theorem (Sufficient Condition 1)

If x* satisfies

- $Ax^* \geq b$
- $\nabla f(x^*) = A^t \lambda^*$
- $\lambda^* > 0$
- Strict complementarity holds
- $Z^t \nabla^2 f(x^*) Z$ is positive definite,

then x^* is a strict local minimizer for the problem

$$\min f(x)$$
 subject to $Ax > b$.

Sufficient condition for linear ineq constraint II

Alternatively we can choose Z differently by avoiding those degenerate constraints.

Theorem (Sufficient Condition 1)

Let \hat{A}_+ be the submatrix of \hat{A} corresponding to the non-degenerate active constraints at x^* (those constraints whose Lagrange Multiplier are positive). Let Z_+ be a basis matrix for the null space of \hat{A}_+ . If x^* satisfies

- $Ax^* > b$
- $\nabla f(x^*) = A^t \lambda^*$
- $\lambda^* > 0$
- $Z_+^t \nabla^2 f(x^*) Z_+$ is positive definite,

then x^* is a strict local minimizer for the problem

$$\min f(x)$$
 subject to $Ax > b$.

Sufficient condition for linear ineq constraint

Show the problem

min
$$f(x) = x_1^3 + x_2^2$$

subject to $-1 \le x_1 \le 0$.

does not satisfy the sufficient condition at (0,0).

Solve the following problem:

min
$$f(x) = x_1^3 - x_2^3 - 2x_1^2 - x_1 + x_2$$

subject to $-x_1 - 2x_2 \ge -2$,
 $x_1 \ge 0$,
 $x_2 \ge 0$.

Modification with the presence of equality

Solve the previous with the first one with equality in two ways:

min
$$f(x) = x_1^3 - x_2^3 - 2x_1^2 - x_1 + x_2$$

subject to $-x_1 - 2x_2 = -2$, $x_1 \ge 0$, $x_2 \ge 0$.

min
$$f(x) = x_1^3 - x_2^3 - 2x_1^2 - x_1 + x_2$$

subject to $x_1 + 2x_2 = 2$, $x_1 \ge 0$, $x_2 \ge 0$.

Continuous Optimization Nonlinear Constrained Optimization

Sections covered in the textbook (2nd edition):

Chapter 12 (Nonlinear constrained problems)

Suggested exercises in the textbook:

▶ 12.11, 12.13, 12.15, 12.18, 12.19, 12.21

Nonlinear Equality Constraints

min
$$f(x) = x_1 + x_2$$
 s.t. $c(x) = x_1^2 + x_2^2 - 2 = 0$.

At the minimizer x^* , there is no ("feasible") direction d s.t. $d^t \nabla c(x^*) = 0$ and $d^t \nabla f(x^*) < 0 \Longrightarrow \nabla f(x^*) = \lambda \nabla c(x^*)$.

Nonlinear Inequality constraint

min
$$f(x) = x_1 + x_2$$
 s.t. $c(x) = 2 - x_1^2 - x_2^2 \ge 0$.

What's the difference for the two cases: $c(x^*) < 0$ and $c(x^*) = 0$? Any modification to the condition $\nabla f(x^*) = \lambda \nabla c(x^*)$?

How about with the constraint $c(x) = x_1^2 + x_2^2 - 2 \le 2$?

More inequality constraints

min
$$f(x) = x_1 + x_2$$

s.t. $c_1(x) = 2 - x_1^2 - x_2^2 \ge 0$
 $c_2(x) = x_2 \ge 0$.

At the minimizer x^* ,

$$\nabla f(x^*) = \lambda_1^* \nabla c_1(x^*) + \lambda_1^* \nabla c_1(x^*), \qquad \lambda_i^* c_i(x^*) = 0, i = 1, 2.$$

Not true for any other points in the feasible region.

Tangent cone and Constraint qualifications

The vector d is a **tangent** (or **tangent vector**) to Ω at a point x if there are a feasible sequence $\{z_k\}$ approaching x and a sequence of positive scalars $\{t_k\}$ with $t_k \to 0$ such that

$$\lim_{k\to\infty}\frac{z_k-x}{t_k}=d$$

The set of all tangents to Ω at x^* is called the **tangent cone** and is denoted by $T_{\Omega}(x^*)$.

The set of **linearized feasible direction** $\mathcal{F}(x)$ at a feasible point x

$$\mathcal{F}(x) = \left\{ d \mid \begin{array}{l} d^t \nabla c_i(x) = 0, \text{ for all } i \in \mathcal{E} \\ d^t \nabla c_i(x) \ge 0, \text{ for all } i \in \mathcal{A}(x) \cap \mathcal{I} \end{array} \right\}$$

These concepts are introduced to investigate the behavior of f near x^* .

Approaching non-optimal point

min
$$f(x) = x_1 + x_2$$
 s.t. $c(x) = x_1^2 + x_2^2 - 2 = 0$.

Find $T_{\Omega}(x)$ and $\mathcal{F}(x)$. How about the constraint becomes the equivalent one $c(x) = (x_1^2 + x_2^2 - 2)^2 = 0$?

The point $x = (-\sqrt{2}, 0)$ is not optimal because there exists a feasible sequence $\{z_k\}$ such that $f(z_k) < f(x)$.

Approaching non-optimal point

$$\min f(x) = x_1 + x_2$$
 s.t. $c(x) = 2 - x_1^2 - x_2^2 \ge 0$.

What's
$$T_{\Omega}(x)$$
 and $\mathcal{F}(x)$ at $x = (-\sqrt{2}, 0)$?

Constraint qualifications: The geometry of the feasible region is **well described** by the algebraic quantities by c_i , for example no constraint like $x_1^3 \ge 0$.

LICQ

For the constraints

$$c_1(x) = 1 - x_1^2 - (x_2 - 1)^2 \ge 0,$$
 $c_2(x) = -x_2 \ge 0,$

check that $T_{\Omega}(x) \neq \mathcal{F}(x)$ at x = (0,0).

Linear Independence constraint qualification (LICQ) holds at a point x if the set of active constraint gradients $\{\nabla c_i(x), i \in \mathcal{A}(x)\}$ is linearly independent.