Sufficient condition for linear ineq constraint I

We need positive definite instead of nonnegative definite (or positive semidefinite) as that for unconstrained or linear equality constrained problems; the extra condition here is strict complementarity (or non-degeneracy) at the point.
Theorem (Sufficient Condition 1)
If x^{*} satisfies

- $A x^{*} \geq b$
- $\nabla f\left(x^{*}\right)=A^{t} \lambda^{*}$
- $\lambda^{*} \geq 0$
- Strict complementarity holds
- $Z^{t} \nabla^{2} f\left(x^{*}\right) Z$ is positive definite, then x^{*} is a strict local minimizer for the problem

$$
\min f(x) \quad \text { subject to } \quad A x \geq b
$$

Sufficient condition for linear ineq constraint II

Alternatively we can choose Z differently by avoiding those degenerate constraints.
Theorem (Sufficient Condition 1)
Let \hat{A}_{+}be the submatrix of \hat{A} corresponding to the non-degenerate active constraints at x^{*} (those constraints whose Lagrange Multiplier are positive). Let Z_{+}be a basis matrix for the null space of \hat{A}_{+}. If x^{*} satisfies

- $A x^{*} \geq b$
- $\nabla f\left(x^{*}\right)=A^{t} \lambda^{*}$
- $\lambda^{*} \geq 0$
- $Z_{+}^{t} \nabla^{2} f\left(x^{*}\right) Z_{+}$is positive definite, then x^{*} is a strict local minimizer for the problem

Sufficient condition for linear ineq constraint

Show the problem

$$
\begin{array}{cl}
\min & f(x)=x_{1}^{3}+x_{2}^{2} \\
\text { subject to } & -1 \leq x_{1} \leq 0 .
\end{array}
$$

does not satisfy the sufficient condition at $(0,0)$.

Solve the following problem:

$$
\begin{array}{cc}
\min & f(x)=x_{1}^{3}-x_{2}^{3}-2 x_{1}^{2}-x_{1}+x_{2} \\
\text { subject to } & -x_{1}-2 x_{2} \geq-2 \\
x_{1} \geq 0 \\
x_{2} \geq 0
\end{array}
$$

Modification with the presence of equality

Solve the previous with the first one with equality in two ways:

$$
\begin{array}{cc}
\min & f(x)=x_{1}^{3}-x_{2}^{3}-2 x_{1}^{2}-x_{1}+x_{2} \\
\text { subject to } & -x_{1}-2 x_{2}=-2, \\
& x_{1} \geq 0 \\
x_{2} \geq 0 \\
\text { min } & f(x)=x_{1}^{3}-x_{2}^{3}-2 x_{1}^{2}-x_{1}+x_{2} \\
\text { subject to } & x_{1}+2 x_{2}=2, \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

Continuous Optimization
 Nonlinear Constrained Optimization

Sections covered in the textbook (2nd edition):

- Chapter 12 (Nonlinear constrained problems)

Suggested exercises in the textbook:

- $12.11,12.13,12.15,12.18,12.19,12.21$

Nonlinear Equality Constraints

$$
\min f(x)=x_{1}+x_{2} \quad \text { s.t. } \quad c(x)=x_{1}^{2}+x_{2}^{2}-2=0
$$

At the minimizer x^{*}, there is no ("feasible") direction d s.t. $d^{t} \nabla c\left(x^{*}\right)=0$ and $d^{t} \nabla f\left(x^{*}\right)<0 \Longrightarrow \nabla f\left(x^{*}\right)=\lambda \nabla c\left(x^{*}\right)$.

Nonlinear Inequality constraint

$$
\min f(x)=x_{1}+x_{2} \quad \text { s.t. } \quad c(x)=2-x_{1}^{2}-x_{2}^{2} \geq 0
$$

What's the difference for the two cases: $c\left(x^{*}\right)<0$ and $c\left(x^{*}\right)=0$? Any modification to the condition $\nabla f\left(x^{*}\right)=\lambda \nabla c\left(x^{*}\right) ?$
How about with the constraint $c(x)=x_{1}^{2}+x_{2}^{2}-2 \leq 2 ?$

More inequality constraints

At the minimizer x^{*},
$\nabla f\left(x^{*}\right)=\lambda_{1}^{*} \nabla c_{1}\left(x^{*}\right)+\lambda_{1}^{*} \nabla c_{1}\left(x^{*}\right), \quad \lambda_{i}^{*} c_{i}\left(x^{*}\right)=0, i=1,2$.
Not true for any other points in the feasible region.

Tangent cone and Constraint qualifications

The vector d is a tangent (or tangent vector) to Ω at a point x if there are a feasible sequence $\left\{z_{k}\right\}$ approaching x and a sequence of positive scalars $\left\{t_{k}\right\}$ with $t_{k} \rightarrow 0$ such that

$$
\lim _{k \rightarrow \infty} \frac{z_{k}-x}{t_{k}}=d
$$

The set of all tangents to Ω at x^{*} is called the tangent cone and is denoted by $T_{\Omega}\left(x^{*}\right)$.

The set of linearized feasible direction $\mathcal{F}(x)$ at a feasible point x

$$
\mathcal{F}(x)=\left\{d \left\lvert\, \begin{array}{l}
d^{t} \nabla c_{i}(x)=0, \text { for all } i \in \mathcal{E} \\
d^{t} \nabla c_{i}(x) \geq 0, \text { for all } i \in \mathcal{A}(x) \bigcap \mathcal{I}
\end{array}\right.\right\}
$$

These concepts are introduced to investigate the behavior of f near x^{*}.

Approaching non-optimal point

$$
\min f(x)=x_{1}+x_{2} \quad \text { s.t. } \quad c(x)=x_{1}^{2}+x_{2}^{2}-2=0
$$

Find $T_{\Omega}(x)$ and $\mathcal{F}(x)$. How about the constraint becomes the equivalent one $c(x)=\left(x_{1}^{2}+x_{2}^{2}-2\right)^{2}=0$?

The point $x=(-\sqrt{2}, 0)$ is not optimal because there exists a feasible sequence $\left\{z_{k}\right\}$ such that $f\left(z_{k}\right)<f(x)$.

Approaching non-optimal point

$$
\min f(x)=x_{1}+x_{2} \quad \text { s.t. } \quad c(x)=2-x_{1}^{2}-x_{2}^{2} \geq 0
$$

What's $T_{\Omega}(x)$ and $\mathcal{F}(x)$ at $x=(-\sqrt{2}, 0)$?
Constraint qualifications: The geometry of the feasible region is well described by the algebraic quantities by c_{i}, for example no constraint like $x_{1}^{3} \geq 0$.

For the constraints

$$
c_{1}(x)=1-x_{1}^{2}-\left(x_{2}-1\right)^{2} \geq 0, \quad c_{2}(x)=-x_{2} \geq 0
$$

check that $T_{\Omega}(x) \neq \mathcal{F}(x)$ at $x=(0,0)$.

Linear Independence constraint qualification (LICQ) holds at a point x if the set of active constraint gradients $\left\{\nabla c_{i}(x), i \in \mathcal{A}(x)\right\}$ is linearly independent.

