
Solution to Midterm 2

1. Consider the problem
min f(x) = x21 + (x2 − 3)2

subject to c1(x) = x21 − 2x2 ≥ 0,

c2(x) = x1 ≥ 0.

(a) Plot the feasible region and three contours of the objective function (No need to find the minimizer, because
it depends on how accurately you draw them).

c2(x) = 0

c1(x) = 0

(b) Given that c2 is NOT active at the global minimizer x∗, find x∗.

If c2 is not active at the global minimizer x∗, then λ∗2 = 0 and the Lagragian (or Lagrange function) can
be written as

L(x, λ) = f(x)− λ1c1(x) = x21 + (x2 − 3)2 − λ1(x21 − 2x2).

The minimizer x∗ and the Lagrangian Multiplier λ∗1 at that point satisfy

∇xL(x, λ) =
(

2x∗1 − 2λ∗1x
∗
1

2x∗2 − 6 + 4λ∗1

)
=

(
0
0

)
Since the constraint c2(x) = x1 ≥ 0 is inactive, we have x∗1 6= 0 and from the first equation λ∗1 = 1.
Substituting it into the second equation, x∗2 = 2. Using the active constraint c1(x) = x21 − 2x2 = 0, we
get x∗1 = 2 (only keep those roots in the feasible region, i.e., x∗1 ≥ 0). Therefore, the unique (global)
minimizer is x∗ = (2, 2).

(c) Show that the second order sufficient condition is satisfied at x∗ (no need to check the first order
conditions).

At x∗ = (2, 2), we have for the only active constraint c1, ∇c1(x∗) = (2x∗1,−2)t = (4,−2)t. Any vector
w = (d1, d2)

t in the critical cone C(x∗, λ∗) if and only if wt∇c(x∗) = 0. Hence 4d1 − 2d2 = 0 or
w = (d, 2d)t and C(x∗, λ∗) = {(d, 2d)t, d ∈ R}.
For w = (d, 2d)t = C(x∗, λ∗),

wt∇2L(x∗, λ∗)w =
(
d, 2d

)(2− 2λ∗1 0
0 2

)(
d
2d

)
= 8d2 > 0

if w 6= 0. Therefore, the second order sufficient condition is satisfied.
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2. Consider the problem
min f(x) = x21 + (x2 − 1)2

subject to c(x) = x21 − κx2 ≥ 0.

Here κ is a positive constant. Find the critical κc, such that (0, 0) is a local minimizer for any κ > κc (and (0, 0)
is not a local minimizer when κ < κc).

The Lagrangian is L(x, λ) = f(x) − λc(x) = x21 + (x2 − 1)2 − λ(x21 − κx2) and the any local minimizer
satisfies the necessary condition

∇xL(x∗, λ∗) =
(

2x∗1 − 2λ∗x∗1
2x∗2 − 2 + κλ∗

)
=

(
0
0

)
.

At the local minimizer x∗ = (0, 0), the first equation is satisfied and from the second equation κλ∗ = 2.
We have to use the second order condition to find the critical value κc to be a local minimizer. The vector
w = (d1, d2)

t in the critical cone C(x∗, λ∗) if and only if wt∇c(x∗) = −κd2 = 0. This implies that d2 = 0
and C(x∗, λ∗) = {(d, 0)t, d ∈ R}. The point x∗ = (0, 0) is a local minimizer if for w = (d, 0)t ∈ C(x∗, λ∗),

wt∇2L(x∗, λ∗)w = (d, 0)

(
2− 2λ∗ 0

0 2

)(
d
0

)
= (2− 2λ∗)d2.

Therefore, x∗ = (0, 0) is a local minimizer if 2 − 2λ∗ > 0 (second order sufficient condition) and it is not a
local minimizer if 2 − 2λ∗ < 0 (second order necessary condition). The critical value for λ∗ is λ∗c = 1 and
the critical value κc = 2/λ∗c = 2.

3. Write down the dual problem of the following linear programming

min f(x) = x1

subject to x1 + x2 = 1,

x2 ≤ 0,

x2 ≥ −1.

The primal problem is equivalent to

min
x

max
λ2≥0,λ3≥0

x1 − λ1(x1 + x2 − 1) + λ2x2 − λ3(x2 + 1).

There is no constraint on λ1 because of the equality x1 + x2 = 1 and the sign in front of the term λ2x2 is
positive because the original constraint is x2 ≤ 0 (not in “≥”).

The dual problem is obtained by interchange the order of min and max, i.e.,

max
λ2≥0,λ3≥0

min
x

x1 − λ1(x1 + x2 − 1) + λ2x2 − λ3(x2 + 1) = max
λ2≥0,λ3≥0

q(λ),

where
q(λ) = min

x
x1 − λ1(x1 + x2 − 1) + λ2x2 − λ3(x2 + 1).

Since there is no constraint on x, q(λ) is finite if and only iff the coefficient of x1 and x2 are both zero
(equivalently the gradient w.r.t. x is zero as in the general cases). From

x1 − λ1(x1 + x2 − 1) + λ2x2 − λ3(x2 + 1) = λ1 − λ3 + x1(1− λ1) + x2(−λ1 + λ2 − λ3),

we have the constraints on λ:
1− λ1 = 0, −λ1 + λ2 − λ3 = 0

and the dual problem (you can further simplify it, but not required) is

min 1− λ3
subject to 1− λ1 = 0,

− λ1 + λ2 − λ3 = 0,

λ2 ≥ 0, λ3 ≥ 0.
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