Solution to Midterm 2

1. Consider the problem

$$
\min
$$

$$
\begin{aligned}
& f(x)=x_{1}^{2}+\left(x_{2}-3\right)^{2} \\
& c_{1}(x)=x_{1}^{2}-2 x_{2} \geq 0 \\
& c_{2}(x)=x_{1} \geq 0
\end{aligned}
$$

subject to
(a) Plot the feasible region and three contours of the objective function (No need to find the minimizer, because it depends on how accurately you draw them).

(b) Given that c_{2} is NOT active at the global minimizer x^{*}, find x^{*}.

If c_{2} is not active at the global minimizer x^{*}, then $\lambda_{2}^{*}=0$ and the Lagragian (or Lagrange function) can be written as

$$
L(x, \lambda)=f(x)-\lambda_{1} c_{1}(x)=x_{1}^{2}+\left(x_{2}-3\right)^{2}-\lambda_{1}\left(x_{1}^{2}-2 x_{2}\right)
$$

The minimizer x^{*} and the Lagrangian Multiplier λ_{1}^{*} at that point satisfy

$$
\nabla_{x} L(x, \lambda)=\binom{2 x_{1}^{*}-2 \lambda_{1}^{*} x_{1}^{*}}{2 x_{2}^{*}-6+4 \lambda_{1}^{*}}=\binom{0}{0}
$$

Since the constraint $c_{2}(x)=x_{1} \geq 0$ is inactive, we have $x_{1}^{*} \neq 0$ and from the first equation $\lambda_{1}^{*}=1$. Substituting it into the second equation, $x_{2}^{*}=2$. Using the active constraint $c_{1}(x)=x_{1}^{2}-2 x_{2}=0$, we get $x_{1}^{*}=2$ (only keep those roots in the feasible region, i.e., $x_{1}^{*} \geq 0$). Therefore, the unique (global) minimizer is $x^{*}=(2,2)$.
(c) Show that the second order sufficient condition is satisfied at x^{*} (no need to check the first order conditions).
At $x^{*}=(2,2)$, we have for the only active constraint $c_{1}, \nabla c_{1}\left(x^{*}\right)=\left(2 x_{1}^{*},-2\right)^{t}=(4,-2)^{t}$. Any vector $w=\left(d_{1}, d_{2}\right)^{t}$ in the critical cone $\mathcal{C}\left(x^{*}, \lambda^{*}\right)$ if and only if $w^{t} \nabla c\left(x^{*}\right)=0$. Hence $4 d_{1}-2 d_{2}=0$ or $w=(d, 2 d)^{t}$ and $\mathcal{C}\left(x^{*}, \lambda^{*}\right)=\left\{(d, 2 d)^{t}, d \in \mathbb{R}\right\}$.
For $w=(d, 2 d)^{t}=\mathcal{C}\left(x^{*}, \lambda^{*}\right)$,

$$
w^{t} \nabla^{2} L\left(x^{*}, \lambda^{*}\right) w=(d, 2 d)\left(\begin{array}{cc}
2-2 \lambda_{1}^{*} & 0 \\
0 & 2
\end{array}\right)\binom{d}{2 d}=8 d^{2}>0
$$

if $w \neq 0$. Therefore, the second order sufficient condition is satisfied.
2. Consider the problem

$$
\min \quad f(x)=x_{1}^{2}+\left(x_{2}-1\right)^{2}
$$

$$
\text { subject to } \quad c(x)=x_{1}^{2}-\kappa x_{2} \geq 0
$$

Here κ is a positive constant. Find the critical κ_{c}, such that $(0,0)$ is a local minimizer for any $\kappa>\kappa_{c}$ (and (0,0) is not a local minimizer when $\kappa<\kappa_{c}$).

The Lagrangian is $L(x, \lambda)=f(x)-\lambda c(x)=x_{1}^{2}+\left(x_{2}-1\right)^{2}-\lambda\left(x_{1}^{2}-\kappa x_{2}\right)$ and the any local minimizer satisfies the necessary condition

$$
\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=\binom{2 x_{1}^{*}-2 \lambda^{*} x_{1}^{*}}{2 x_{2}^{*}-2+\kappa \lambda^{*}}=\binom{0}{0}
$$

At the local minimizer $x^{*}=(0,0)$, the first equation is satisfied and from the second equation $\kappa \lambda^{*}=2$. We have to use the second order condition to find the critical value κ_{c} to be a local minimizer. The vector $w=\left(d_{1}, d_{2}\right)^{t}$ in the critical cone $\mathcal{C}\left(x^{*}, \lambda^{*}\right)$ if and only if $w^{t} \nabla c\left(x^{*}\right)=-\kappa d_{2}=0$. This implies that $d_{2}=0$ and $\mathcal{C}\left(x^{*}, \lambda^{*}\right)=\left\{(d, 0)^{t}, d \in \mathbb{R}\right\}$. The point $x^{*}=(0,0)$ is a local minimizer if for $w=(d, 0)^{t} \in \mathcal{C}\left(x^{*}, \lambda^{*}\right)$,

$$
w^{t} \nabla^{2} L\left(x^{*}, \lambda^{*}\right) w=(d, 0)\left(\begin{array}{cc}
2-2 \lambda^{*} & 0 \\
0 & 2
\end{array}\right)\binom{d}{0}=\left(2-2 \lambda^{*}\right) d^{2}
$$

Therefore, $x^{*}=(0,0)$ is a local minimizer if $2-2 \lambda^{*}>0$ (second order sufficient condition) and it is not a local minimizer if $2-2 \lambda^{*}<0$ (second order necessary condition). The critical value for λ^{*} is $\lambda_{c}^{*}=1$ and the critical value $\kappa_{c}=2 / \lambda_{c}^{*}=2$.
3. Write down the dual problem of the following linear programming

$$
\begin{array}{cl}
\min & f(x)=x_{1} \\
\text { subject to } & x_{1}+x_{2}=1, \\
& x_{2} \leq 0 \\
& x_{2} \geq-1
\end{array}
$$

The primal problem is equivalent to

$$
\min _{x} \max _{\lambda_{2} \geq 0, \lambda_{3} \geq 0} x_{1}-\lambda_{1}\left(x_{1}+x_{2}-1\right)+\lambda_{2} x_{2}-\lambda_{3}\left(x_{2}+1\right)
$$

There is no constraint on λ_{1} because of the equality $x_{1}+x_{2}=1$ and the sign in front of the term $\lambda_{2} x_{2}$ is positive because the original constraint is $x_{2} \leq 0$ (not in " \geq ").

The dual problem is obtained by interchange the order of min and max, i.e.,

$$
\max _{\lambda_{2} \geq 0, \lambda_{3} \geq 0} \min _{x} x_{1}-\lambda_{1}\left(x_{1}+x_{2}-1\right)+\lambda_{2} x_{2}-\lambda_{3}\left(x_{2}+1\right)=\max _{\lambda_{2} \geq 0, \lambda_{3} \geq 0} q(\lambda)
$$

where

$$
q(\lambda)=\min _{x} x_{1}-\lambda_{1}\left(x_{1}+x_{2}-1\right)+\lambda_{2} x_{2}-\lambda_{3}\left(x_{2}+1\right) .
$$

Since there is no constraint on $x, q(\lambda)$ is finite if and only iff the coefficient of x_{1} and x_{2} are both zero (equivalently the gradient w.r.t. x is zero as in the general cases). From

$$
x_{1}-\lambda_{1}\left(x_{1}+x_{2}-1\right)+\lambda_{2} x_{2}-\lambda_{3}\left(x_{2}+1\right)=\lambda_{1}-\lambda_{3}+x_{1}\left(1-\lambda_{1}\right)+x_{2}\left(-\lambda_{1}+\lambda_{2}-\lambda_{3}\right)
$$

we have the constraints on λ :

$$
1-\lambda_{1}=0, \quad-\lambda_{1}+\lambda_{2}-\lambda_{3}=0
$$

and the dual problem (you can further simplify it, but not required) is

$$
\begin{array}{ll}
\min & 1-\lambda_{3} \\
\text { subject to } & 1-\lambda_{1}=0 \\
& -\lambda_{1}+\lambda_{2}-\lambda_{3}=0 \\
& \lambda_{2} \geq 0, \lambda_{3} \geq 0
\end{array}
$$

