Continuous Optimization

Midterm Exam 2 March 22, 2012

Name (print):	
Computing ID:	
Signature	

Question	Grade
1	
2	
3	
Total	

Theorem 0.1 (First-order necessary (KKT) conditions). Suppose x^* is a local solution, f and c_i are continuously differentiable and the **LICQ** holds at x^* . Then there exist a Lagrange multiplier λ^* , $i \in \mathcal{E} \bigcup \mathcal{I}$, such that

- (1) $c_i(x^*) = 0$, for all $i \in \mathcal{E}$ (Feasible condition for equality constraints)
- (2) $c_i(x^*) \ge 0$, for all $i \in \mathcal{I}$ (Feasible condition for inequality constraints)
- (3) $\lambda_i^* \geq 0$, for all $i \in \mathcal{I}$
- (4) $\lambda_i^* c_i(x^*) = 0$, for all $i \in \mathcal{E} \bigcup \mathcal{I}$ (Complementarity)
- (5) $\nabla_x L(x^*, \lambda^*) = 0$

Theorem 0.2 (Second-order necessary conditions).

$$w^T \nabla_{xx} L(x^*, \lambda^*) w \ge 0, \quad \forall \ w \in \mathcal{C}(x^*, \lambda^*).$$

Theorem 0.3 (Second-order sufficient conditions).

$$w^T \nabla_{xx} L(x^*, \lambda^*) w > 0, \quad \forall \ w \in \mathcal{C}(x^*, \lambda^*), \ w \neq 0.$$

1. (4+8+8 pt) Consider the problem

min
$$f(x) = x_1^2 + (x_2 - 3)^2$$

subject to
$$c_1(x) = x_1^2 - 2x_2 \ge 0,$$

$$c_2(x) = x_1 \ge 0.$$

- (a) Plot the feasible region and three contours of the objective function (No need to find the minimizer, because it depends on how accurately you draw them).
- (b) Given that c_2 is NOT active at the global minimizer x^* , find x^* .
- (c) Show that the **second order sufficient condition** is satisfied at x^* (no need to check the first order conditions).

2.(15 pt) Consider the problem

min
$$f(x) = x_1^2 + (x_2 - 1)^2$$

subject to $c(x) = x_1^2 - \kappa x_2 \ge 0$.

Here κ is a positive constant. Find the critical κ_c , such that (0,0) is a local minimizer for any $\kappa > \kappa_c$ (and (0,0) is not a local minimizer when $\kappa < \kappa_c$).

3. (15 pt) Write down the dual problem of the following linear programming

min
$$f(x) = x_1$$
 subject to
$$x_1 + x_2 = 1,$$

$$x_2 \le 0,$$

$$x_2 \ge -1.$$