Solution to Midterm 1

1. (10 pt) Find the largest connected interval on which $f(x)=1 /\left(1+x^{2}\right)$ is convex.

Since f is smooth, it is convex on some domain if and only if $f^{\prime \prime}(x) \geq 0$ on that domain. It is easy to see that

$$
\begin{gathered}
f^{\prime}(x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}} \\
f^{\prime \prime}(x)=-\frac{2}{\left(1+x^{2}\right)^{2}}+\frac{8 x^{2}}{\left(1+x^{2}\right)^{3}}=\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}}
\end{gathered}
$$

f is convex on the domain where $6 x^{2}-2 \geq 0$ or $|x|>1 / \sqrt{3}$. Therefore the largest connected interval on which f is convex is $[1 / \sqrt{3}, \infty)$.
2. $(20 \mathrm{pt})$ Let $f(x, y)=x^{2}+y^{2}-x y$.
(a) (5 pt)Compute $\nabla f(x), H f(x)$. Is f convex? Explain your answer.

$$
\nabla f=\binom{2 x-y}{2 y-x}, \quad \nabla^{2} f=H f=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

It is easy to see that the two eigenvalues of $H f \lambda_{1}=1, \lambda_{2}=3$ are both positive. This implies that $H f$ is positive definite and f is covex. (You can also use the fact that $\operatorname{tr}(H f)=4>0$ and $\operatorname{det}(H f)=3>0$ to show $H f$ is positive definite, or two positive eigenvalues).
(b) (5 pt)Find the minimizer of $f(x, y)$.

The equation $\nabla f=0$ has the solution $\left(x^{*}, y^{*}\right)=(0,0)$. Since f is convex, this is the unique (global) minimizer.
(c) $(5 \mathrm{pt})$ Write out the formula for the Steepest Descent method for function minimization. The iterative scheme for Steepest Descent method is

$$
\binom{x_{n+1}}{y_{n+1}}=\binom{x_{n}}{y_{n}}+\alpha_{n} \vec{p}_{n}
$$

where \vec{p}_{n} is the negative gradient direction

$$
\vec{p}_{n}=-\nabla f\left(x_{n}, y_{n}\right)=\binom{y_{n}-2 x_{n}}{x_{n}-2 y_{n}}
$$

and α_{n} is the optimal length to minimize $\phi(\alpha)=f\left(\left(x_{n}, y_{n}\right)+\alpha \vec{p}_{n}\right)=f\left((1-2 \alpha) x_{n}+\right.$ $\left.\alpha y_{n},(1-2 \alpha) y_{n}+\alpha x_{n}\right)$.
(d) $(5 \mathrm{pt})$ Compute one Steepest Descent iteration, starting with initial point $\left(x^{0}, y^{0}\right)=(1,1)$. Start with $\left(x_{0}, y_{0}\right)=(1,1)$, we have $\vec{p}_{0}=(-1,-1)$ and

$$
\binom{x_{1}}{y_{1}}=\binom{x_{0}}{y_{0}}+\alpha \vec{p}_{0}=\binom{1-\alpha}{1-\alpha}
$$

Here α is the minimizer of

$$
\phi(\alpha)=f\left(x_{1}, y_{1}\right)=f(1-\alpha, 1-\alpha)=(1-\alpha)^{2}
$$

which is given by $\phi^{\prime}\left(\alpha_{1}\right)=0$ or $\alpha_{0}=1$. Therefore $\left(x_{1}, y_{1}\right)=(0,0)$.
Remark. In general, $\alpha \neq 1$ and you can not get to the minimizer in just one step. Try $\left(x_{0}, y_{0}\right)=(0,1)$ to see this.
3. (20 pt)Let $\delta>0, x_{0}$ be a real number and the function $f(x)$ is defined as

$$
f(x)=\frac{1}{2}\left(x-x_{0}\right)^{2}+\delta|x| .
$$

(a) (8 pt) Is f convex? Why?

Let $f_{1}(x)=\left(x-x_{0}\right)^{2} / 2$ and $f_{2}(x)=|x|$. Since both $f_{1}\left(f_{1}^{\prime \prime} \geq 0\right)$ and f_{2} (which is a norm) are convex, so is their sum.
(b) (12 pt)Find the global minimizer of $f(x)$.

When $x \geq 0, f(x)=\left(x-x_{0}\right)^{2} / 2+\delta x$ and $f^{\prime}(x)=x-x_{0}+\delta$. If $x_{0}-\delta \geq 0$ then the minimizer is at $x^{*}=x_{0}-\delta$, otherwise $f^{\prime}(x)>0$ for $x \geq 0$ and the minimizer is at $x^{*}=0$. When $x \leq 0, f(x)=\left(x-x_{0}\right)^{2} / 2-\delta x$ and $f^{\prime}(x)=x-x_{0}-\delta$. If $x_{0}+\delta<0$ then the minimizer is at $x^{*}=x_{0}+\delta$, otherwise $f^{\prime}(x)<0$ for $x \leq 0$ and the minimizer is at $x^{*}=0$.
Put all these together, we have the global minimizer

$$
x^{*}= \begin{cases}x_{0}-\delta, & \text { if } x_{0} \geq \delta \\ 0, & \text { if }-\delta<x_{0}<\delta, \\ x_{0}+\delta, & \text { if } x_{0} \leq-\delta\end{cases}
$$

